18.06.11: ‘Nullspace’

Lecturer: Barwick

Monday 29 February 2016

18.06.11: 'Nullspace’

Take some vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ and make them into the columns of an $n \times k$ matrix

$$
A=\left(\begin{array}{cccc}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k}
\end{array}\right) .
$$

Multiplication by A is a map $T_{A}: \mathbf{R}^{k} \longrightarrow V$ that carries \hat{e}_{i} to \vec{v}_{i}.
(1) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ are linearly independent if and only if T_{A} is injective.
(2) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span V if and only if T_{A} is surjective.
(3) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are a basis of V if and only if T_{A} is bijective.

18.06.11: 'Nullspace'

Let's see why this works.
First, let's unpack what the injectivity of T_{A} would mean. It's this condition for any $\vec{x}, \vec{y} \in \mathbf{R}^{k}$:

$$
\text { if } A \vec{x}=A \vec{y} \text {, then } \vec{x}=\vec{y} .
$$

Defining $\vec{z}:=\vec{x}-\vec{y}$, we see that we want to show that

$$
\text { if } A \vec{z}=\overrightarrow{0} \text {, then } \vec{z}=\overrightarrow{0}
$$

(In other words, we're saying that the kernel of A consists of just the zero vector!)

18.06.11: 'Nullspace'

Now $A \vec{z}$ is a linear combination of the column vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ with coefficients given by the components of \vec{z}. So the injectivity of T_{A} is equivalent to the following:

$$
\text { if } \sum_{i=1}^{k} z_{i} \vec{v}_{i}=\overrightarrow{0} \text {, then } z_{1}=\cdots=z_{k}=0
$$

That's exactly what it means for $\vec{v}_{1}, \ldots, \vec{v}_{k}$ to be linearly independent.

18.06.11: 'Nullspace’

Now let's unpack what the surjectivity of T_{A} would mean. It's the condition that for any vector $\vec{w} \in V$, there exists a vector $\vec{x} \in \mathbf{R}^{k}$ such that $\vec{w}=A \vec{x}$. In other words, for any vector $\vec{w} \in V$, there exist numbers x_{1}, \ldots, x_{k} such that

$$
\vec{w}=\sum_{i=1}^{k} x_{i} \vec{v}_{i} .
$$

That's exactly what it means for $\vec{v}_{1}, \ldots, \vec{v}_{k}$ to span the subspace V.

18.06.11: 'Nullspace’

So we've proved our result: if

$$
A=\left(\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k}
\end{array}\right),
$$

then
(1) $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ are linearly independent if and only if T_{A} is injective.
(2) $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span V if and only if T_{A} is surjective.
(3) $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are a basis of V if and only if T_{A} is bijective.

18.06.11: 'Nullspace'

Now back to our motivating example: we've been given a system of linear equations

$$
\overrightarrow{0}=A \vec{x},
$$

where A is an $m \times n$ matrix. To solve this equation is to find a basis for the kernel - aKA nullspace - of A.

In other words, the objective is to find a list of linearly independent solutions $\vec{v}_{1}, \ldots, \vec{v}_{k}$ such that any other solution can be written as a linear combination of these! The dimension of $\operatorname{ker}(A)$ - sometimes called the nullity of A - is the number k.

18.06.11: 'Nullspace’

There are two good ways of extracting a basis of the kernel. There's a way using row operations, and a way using column operations. You've been using these for a while already, but here's the way I think of these ...

Suppose we can apply some row operations:

$$
(A \mid B) \leadsto(C \mid D)
$$

Here, A and C are $m \times n$ matrices, and B and D are $m \times p$ matrices. What this really means is that there's an invertible $m \times m$ matrix M such that $M A=C$ and $M B=D$. (And it turns out that any M can be built this way!)

That's why it works to solve equations: if in the end $C=I$, then $M=A^{-1}$, and $D=A^{-1} B$.

18.06.11: 'Nullspace’

So you can use row operations to whittle your favorite matrix down, and then solve. This is nice because it's so familiar. Let's do a few examples together as a team.

First, how about

$$
A=\left(\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right) ?
$$

18.06.11: 'Nullspace’

One more:

$$
A=\left(\begin{array}{ccccc}
2 & 2 & -1 & 0 & 1 \\
-1 & -1 & 2 & -3 & 1 \\
1 & 1 & -2 & 0 & -1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

18.06.11: 'Nullspace'

Column operations work exactly dual to row operations. (Just think of transposing, doing row operations, and transposing back!) So suppose we can apply some column operations:

$$
\left(\frac{A}{B}\right) \rightsquigarrow\left(\frac{C}{D}\right)
$$

Here, A and C are $m \times n$ matrices, and B and D are $p \times n$ matrices. What this really means is that there's an invertible $n \times n$ matrix N such that $A N=C$ and $B N=D$. (And it turns out that any N can be built this way!)

18.06.11: 'Nullspace’

Why is that a good idea? Well, we're looking for vectors such that $A \vec{x}=\overrightarrow{0}$. So if we take

$$
\left(\frac{A}{I}\right)
$$

where I is the $n \times n$ identity matrix, then we can start using column operations to get it to some

$$
\left(\frac{C}{D}\right)
$$

So $A D=C$. So if C has a column of zeroes, then the corresponding column of D will be a vector in the kernel. Furthermore, if you get C into column echelon form, then the nonzero column vectors of D lying under the zero columns of C form a basis of $\operatorname{ker}(A)$.

18.06.11: 'Nullspace’

Let's do this one again:

$$
A=\left(\begin{array}{ccccc}
2 & 2 & -1 & 0 & 1 \\
-1 & -1 & 2 & -3 & 1 \\
1 & 1 & -2 & 0 & -1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

18.06.11: 'Nullspace’

Another:

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

