18.06.12: 'Kernels and
 images'

Lecturer: Barwick

Wednesday 2 March 2016

18.06.12: 'Kernels and images'

Suppose we can apply some row operations:

$$
(A \mid B) \leadsto(C \mid D) .
$$

Here, A and C are $m \times n$ matrices, and B and D are $m \times p$ matrices. What this really means is that there's an invertible $m \times m$ matrix M such that $M A=C$ and $M B=D$. (And it turns out that any M can be built this way!)

18.06.12: 'Kernels and images'

So you can use row operations to whittle your favorite matrix down, and then solve.

First, let's apply row operations to

$$
(A \mid 0)=\left(\begin{array}{ccccc|c}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{array}\right) ?
$$

18.06.12: 'Kernels and images'

When we get A into reduced row echelon form (rref, as the cool kids say) we get

$$
(C \mid 0)=\left(\begin{array}{ccccc|c}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Why is this good? First, we haven't changed the kernel. A vector $\vec{x} \in \mathbf{R}^{5}$ is in $\operatorname{ker}(A)$ if and only if \vec{x} is in $\operatorname{ker}(C)=\operatorname{ker}(M A)$. (Why?)

18.06.12: 'Kernels and images'

Second, we can use the rref above gives us this system of linear equations

$$
\begin{aligned}
& x_{1}=2 x_{2}+x_{4}-3 x_{5} \\
& x_{3}=-2 x_{4}+2 x_{5}
\end{aligned}
$$

So x_{1} and x_{3} can each be written in terms of x_{2}, x_{4}, x_{5}, and there's no dependence among x_{2}, x_{4}, x_{5}. So pick variables s, t, u, and let $x_{2}=s, x_{4}=t$, and $x_{5}=u$.

18.06.12: 'Kernels and images'

There's your basis!

18.06.12: 'Kernels and images'

Let's find the kernel via row reduction

$$
A=\left(\begin{array}{ccccc}
2 & 2 & -1 & 0 & 1 \\
-1 & -1 & 2 & -3 & 1 \\
1 & 1 & -2 & 0 & -1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

18.06.12: 'Kernels and images'

When we get $(A \mid 0)$ into rref, we obtain

$$
\left(\begin{array}{lllll|l}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

18.06.12: 'Kernels and images'

So if $x_{2}=s$ and $x_{5}=t$, then

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=s\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right)
$$

There's your basis!

18.06.12: 'Kernels and images'

Column operations work exactly dual to row operations. (Just think of transposing, doing row operations, and transposing back!) So suppose we can apply some column operations:

$$
\left(\frac{A}{B}\right) \rightsquigarrow\left(\frac{C}{D}\right) .
$$

Here, A and C are $m \times n$ matrices, and B and D are $p \times n$ matrices. What this really means is that there's an invertible $n \times n$ matrix N such that $A N=C$ and $B N=D$.

18.06.12: 'Kernels and images'

Why is that a good idea? Well, we're looking for vectors such that $A \vec{x}=\overrightarrow{0}$. So if we take

$$
\left(\frac{A}{I}\right)
$$

where I is the $n \times n$ identity matrix, then we can start using column operations to get it to some

$$
\left(\frac{C}{D}\right)
$$

So $A D=C$. So if C has a column of zeroes, then the corresponding column of D will be a vector in the kernel. Furthermore, if you get C into column echelon form, then the nonzero column vectors of D lying under the zero columns of C form a basis of $\operatorname{ker}(A)$. (Properly speaking, to prove this, you need the

18.06.12: 'Kernels and images'

Rank-Nullity theorem, which we'll come to soon.)

18.06.12: 'Kernels and images'

Let's do this one:

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Let us get the top of $\left(\frac{A}{I}\right)$ into column echelon form.

18.06.12: 'Kernels and images'

We obtain

$$
\left(\frac{C}{D}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 3 & -2 & 8 \\
0 & 1 & 0 & -5 & 1 & -4 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -7 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The last three columns of D are our basis.

18.06.12: 'Kernels and images'

Dual to finding a basis of the kernel, we can find a basis of the image of a matrix, $\operatorname{im}(A)$. The image of A is the span of the column vectors of A.

If A is an $m \times n$ matrix, then A eats a vector of \mathbf{R}^{n}, and it poops a vector of \mathbf{R}^{m}. The kernel of A is thus a subspace of \mathbf{R}^{n}, and the image of A is a subspace of \mathbf{R}^{m}.

The way we compute a basis of the image is not wildly different from the way in which we compute a basis of the kernel, but the operations are dual, and that can get confusing. To clear up our confusion, we'll need some theorems!!

18.06.12: 'Kernels and images'

Theorem (Rank-Nullity Theorem). If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=n
$$

We are going to spend some quality time with this result.

