18.06.13: 'Kernels and images - the sequel'

Lecturer: Barwick

Friday 4 March 2016

18.06.13: 'Kernels and images - the sequel'

Column operations work exactly dual to row operations. (Just think of transposing, doing row operations, and transposing back!) So suppose we can apply some column operations:

$$
\left(\frac{A}{B}\right) \leadsto\left(\frac{C}{D}\right) .
$$

Here, A and C are $m \times n$ matrices, and B and D are $p \times n$ matrices. What this really means is that there's an invertible $n \times n$ matrix N such that $A N=C$ and $B N=D$.

18.06.13: 'Kernels and images - the sequel'

Well, we're looking for vectors such that $A \vec{x}=\overrightarrow{0}$. So if we take

$$
\left(\frac{A}{I}\right)
$$

then we can start using column operations to get it to some

$$
\left(\frac{C}{D}\right)
$$

So $A D=C$.

So when we look at

$$
\left(\frac{C}{D}\right)
$$

if C has a column of zeroes, then the corresponding column of D will be a vector in the kernel. Furthermore, if you get C into column echelon form, then the nonzero column vectors of D lying under the zero columns of C form a basis of $\operatorname{ker}(A)$. (Properly speaking, to prove this, you need the Rank-Nullity theorem, which we'll come to soon.)
18.06.13: 'Kernels and images - the sequel'

Let's do this one:

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Let us get the top of $\left(\frac{A}{I}\right)$ into column echelon form.
18.06.13: 'Kernels and images - the sequel'

We obtain

$$
\left(\frac{C}{D}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 3 & -2 & 8 \\
0 & 1 & 0 & -5 & 1 & -4 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -7 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The last three columns of D are our basis.

18.06.13: 'Kernels and images - the sequel'

If

$$
A=\left(\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right)
$$

we already found a basis of $\operatorname{ker}(A)$:

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right)\right\}
$$

18.06.13: 'Kernels and images - the sequel'

To use our column method, we don't have to get the top in reduced column echelon form

$$
\left(\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

18.06.13: 'Kernels and images - the sequel'

We obtain:

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 5 & 3 & 0 \\
0 & 0 & 13 & 8 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-2 & 4 & 1 & 0 & -4 \\
1 & -2 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

18.06.13: 'Kernels and images - the sequel'

So we claim that this is a new basis of $\operatorname{ker}(A)$:

$$
\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}=\left\{\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
4 \\
-2 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
-4 \\
3 \\
1
\end{array}\right)\right\}
$$

Note that this isn't the same as $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, but

$$
\begin{aligned}
\vec{v}_{2}=\vec{w}_{1} ; & \vec{v}_{1}=2 \vec{w}_{1}+\vec{w}_{2} ; \\
\vec{v}_{1}-2 \vec{v}_{2}=\vec{w}_{2} ; & \vec{v}_{2}=\vec{w}_{1} ; \\
3 \vec{v}_{2}+\vec{v}_{3}=\vec{w}_{3} ; & \vec{v}_{3}=-3 \vec{w}_{1}+\vec{w}_{3} .
\end{aligned}
$$

18.06.13: 'Kernels and images - the sequel'

This gives what's called the change of basis matrix:

$$
\begin{aligned}
& \left(\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3}
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; \\
& \left(\begin{array}{lll}
\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 3 \\
0 & 0 & 1
\end{array}\right) ;
\end{aligned}
$$

18.06.13: 'Kernels and images - the sequel'

Dual to finding a basis of the kernel, we can find a basis of the image of a matrix, $\operatorname{im}(A)$. The image of A is the span of the column vectors of A.

If A is an $m \times n$ matrix, then A eats a vector of \mathbf{R}^{n}, and it poops a vector of \mathbf{R}^{m}. The kernel of A is thus a subspace of \mathbf{R}^{n}, and the image of A is a subspace of \mathbf{R}^{m}.

The way we compute a basis of the image is not wildly different from the way in which we compute a basis of the kernel, but the operations are dual, and that can get confusing. To clear up our confusion, we'll need some theorems!!

18.06.13: 'Kernels and images - the sequel'

Theorem (Rank-Nullity Theorem). If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=n .
$$

We are going to spend some quality time with this result.

