18.06.14: 'Rank-nullity’

Lecturer: Barwick

Monday 7 March 2016

18.06.14: 'Rank-nullity'

Theorem (Rank-Nullity Theorem). If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=n .
$$

18.06.14: 'Rank-nullity'

Suppose A were in reduced row echelon form:

$$
\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 4 \\
0 & 0 & 1 & 0 & 0 & 7 \\
0 & 0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Then, we have a few columns ($1,3,4,5$ in this case) that are distinct standard basis vectors, and the other columns can be written as a linear combination of these. So the rank here is 4 .

18.06.14: 'Rank-nullity'

When we have a vector \vec{x} with $A \vec{x}=\overrightarrow{0}$, we can write x_{1}, x_{3}, x_{4}, and x_{5} in terms of the other variables:

And as we know, $4+2=6$.

18.06.14: 'Rank-nullity'

This pattern works in general. A matrix A is in rref iff it looks like this:
$\left(\begin{array}{lllllllllllll}\vec{A}^{1} & \cdots & \vec{A}^{k_{1}-1} & \hat{e}_{1} & \vec{A}^{1+k_{1}} & \cdots & \vec{A}^{k_{2}-1} & \hat{e}_{2} & \cdots & \hat{e}_{r} & \vec{A}^{1+k_{r}} & \cdots & \vec{A}^{n}\end{array}\right)$. where the column vectors $\vec{A}^{1+k_{i}}, \ldots, \vec{A}_{k_{i+1}-1}$ all lie in the span of $\hat{e}_{1}, \ldots, \hat{e}_{i}$, but not in the span of $\hat{e}_{1}, \ldots, \hat{e}_{i-1}$.

The image is thus the span of the of distinct \hat{e}_{i} 's that appear:

$$
r=\operatorname{dim}(\operatorname{im}(A)) .
$$

18.06.14: 'Rank-nullity'

When you compute the kernel, on the other hand, you express $x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{r}}$ in terms of the other x_{i} 's. That is, you write any $\vec{x} \in \operatorname{ker}(A)$ as a linear combination of vectors

$$
\vec{v}_{1}, \ldots, \vec{v}_{k_{1}-1}, \vec{v}_{1+k_{1}}, \ldots, \vec{v}_{k_{2}-1}, \ldots, \vec{v}_{1+k_{r}}, \ldots, \vec{v}_{n},
$$

where each \vec{v}_{j} has a 1 in the j th spot, something in spots $k_{1}, k_{2}, \ldots, k_{r}$, and a 0 in every other spot.

In particular, these vectors must be linearly independent, so they form a basis of the kernel! And since there are $n-r$ of them, we have

$$
\operatorname{dim}(\operatorname{ker}(A))=n-r,
$$

18.06.14: 'Rank-nullity'

as desired.

This proves the Rank-Nullity Theorem when A is in rref!

18.06.14: 'Rank-nullity'

But what if A isn't in rref? What then?

Well, we know we can perform row operations to get A into rref. (This is the magic of Gaussian elimination.)

$$
\text { row operations: } A \rightarrow M A \text {. }
$$

There's an invertible $m \times m$ matrix M such that $M A$ is in rref.

Now we first recall that row operations don't change the kernel:

$$
\operatorname{ker}(A)=\operatorname{ker}(M A)
$$

18.06.14: 'Rank-nullity'

However, row operations absolutely do change the image:

$$
\operatorname{im}(A) \neq \operatorname{im}(M A) .
$$

18.06.14: 'Rank-nullity'

Well, that's too bad! So what do we do to get out of trouble? We remember that the Rank-Nullity theorem only involves the dimension of the image, not the image itself.

And good news: row operations don't change the dimension of the image. So even though

$$
\operatorname{im}(A) \neq \operatorname{im}(M A)
$$

we still have

$$
\operatorname{dim}(\operatorname{im}(A))=\operatorname{dim}(\operatorname{im}(M A))
$$

(Why???)

18.06.14: 'Rank-nullity'

Now, victory is ours! For any old $m \times n$ matrix A, we multiply on the left by an invertible $m \times m$ matrix M to get a matrix $M A$ in rref, and we have

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=\operatorname{dim}(\operatorname{ker}(M A))+\operatorname{dim}(\operatorname{im}(M A))=n .
$$

\{mic drop $\}$

18.06.14: 'Rank-nullity'

Let's take a moment to imagine how our proof might have been different if we'd used column operations to get our matrix into rcef:
column operations: $A \rightarrow A N$,
where N is an invertible $n \times n$ matrix.

18.06.14: 'Rank-nullity'

The point here is that column operations don't change the image:

$$
\operatorname{im}(A)=\operatorname{im}(A N)
$$

However, column operations absolutely do change the kernel:

$$
\operatorname{ker}(A) \neq \operatorname{ker}(A N)
$$

BUT, column operations don't change the dimension of the kernel:

$$
\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}(\operatorname{ker}(A N))
$$

18.06.14: 'Rank-nullity'

Using pure thought, tell me what the rank and nullity are of these matrices:

$$
\begin{gathered}
\left(\begin{array}{cc}
5 & -15 \\
-2 & 6
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 4 & -138 \\
5 & 1 & 75
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 6 & 3 \\
5 & 1 & 50 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

18.06.14: 'Rank-nullity'

$$
\begin{gathered}
\left(\begin{array}{ccc}
9 & 9 & 9 \\
1 & 1 & 1 \\
4 & 4 & 4
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 5 & 7 \\
-2 & 6 & 3 \\
-1 & 11 & 10
\end{array}\right)
\end{gathered}
$$

18.06.14: 'Rank-nullity'

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 2 & 4 & 8 & 16
\end{array}\right)
$$

