18.06.15: 'Rank-nullity: the

sequel'

Lecturer: Barwick

Wednesday 9 March 2016

18.06.15: 'Rank-nullity: the sequel'

Let's take a moment to imagine how our proof of the Rank-Nullity Theorem might have been different if we'd used column operations to get our matrix into rcef:
column operations: $A \longrightarrow A N$,
where N is an invertible $n \times n$ matrix.

18.06.15: 'Rank-nullity: the sequel'

The point here is that column operations don't change the image:

$$
\operatorname{im}(A)=\operatorname{im}(A N) .
$$

However, column operations absolutely do change the kernel:

$$
\operatorname{ker}(A) \neq \operatorname{ker}(A N) .
$$

BUT, column operations don't change the dimension of the kernel:

$$
\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}(\operatorname{ker}(A N)) .
$$

18.06.15: 'Rank-nullity: the sequel'

Using pure thought, tell me what the rank and nullity are of these matrices:

$$
\begin{gathered}
\left(\begin{array}{cc}
5 & -15 \\
-2 & 6
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 4 & -138 \\
5 & 1 & 75
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 6 & 3 \\
5 & 1 & 50 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

18.06.15: 'Rank-nullity: the sequel'

$$
\begin{gathered}
\left(\begin{array}{ccc}
9 & 9 & 9 \\
1 & 1 & 1 \\
4 & 4 & 4
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 5 & 7 \\
-2 & 6 & 3 \\
-1 & 11 & 10
\end{array}\right)
\end{gathered}
$$

18.06.15: 'Rank-nullity: the sequel'

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 2 & 4 & 8 & 16
\end{array}\right)
$$

18.06.15: 'Rank-nullity: the sequel'

One final topic that we didn't yet discuss. We've focused on solving equations $A \vec{x}=\overrightarrow{0}$, but what about the more general equation $A \vec{x}=\vec{v}$? What do we do there?

There are two options:

- no solutions - here \vec{v} does not lie in the image of A;
- at least one solution - here $\vec{v} \in \operatorname{im}(A)$.

In the latter case, let's try to work out a way to find all the solutions to $A \vec{x}=\vec{v}$.

18.06.15: 'Rank-nullity: the sequel'

Let's suppose we've located one solution - a vector $\vec{x}_{0} \in \mathbf{R}^{n}$ such that $A \vec{x}_{0}=\vec{v}$. It turns out we can get all of them from that one, if we know about ... the kernel!

Why? Well, suppose $\vec{y} \in \operatorname{ker}(A)$. Then

$$
A\left(\vec{x}_{0}+\vec{y}\right)=A \vec{x}_{0}+A \vec{y}=\vec{v}+\overrightarrow{0}=\vec{v} .
$$

On the other hand, if $A \vec{x}=\vec{v}$, then

$$
A\left(\vec{x}-\vec{x}_{0}\right)=A \vec{x}-A \vec{x}_{0}=\vec{v}-\vec{v}=\overrightarrow{0} .
$$

18.06.15: 'Rank-nullity: the sequel'

Hence the set of solutions to the equation $A \vec{x}=\vec{v}$ is the set

$$
\left\{\vec{x}=\vec{x}_{0}+\vec{y} \mid \vec{y} \in \operatorname{ker}(A)\right\} .
$$

18.06.15: 'Rank-nullity: the sequel'

Let's do this in an example. If we have

$$
\vec{v}=\left(\begin{array}{c}
-4 \\
3 \\
7
\end{array}\right)
$$

and

$$
A=\left(\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right)
$$

let's find the set of solutions \vec{x} to the equation $A \vec{x}=\vec{v}$.

18.06.15: 'Rank-nullity: the sequel'

The first step is to find a basis of $\operatorname{ker}(A)$:

$$
\left\{\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right)\right\}
$$

18.06.15: 'Rank-nullity: the sequel'

On the other hand, it's easy to find one solution:

18.06.15: 'Rank-nullity: the sequel'

So, any solution can be written in a unique fashion as

$$
\vec{x}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)+s\left(\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)+u\left(\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right) .
$$

