18.06.16: The four fundamental subspaces

Lecturer: Barwick

Monday 14 March 2016

Here it is again:
Theorem (Rank-Nullity Theorem). If A is an $m \times n$ matrix, then

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=n
$$

We saw a proof of this by reducing to rref or rcef, and then checking it there. There's just one thing that might bug us here. If I think of the linear map

$$
T_{A}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m},
$$

then we see that $\operatorname{ker}(A)$ is a subspace of the source \mathbf{R}^{n}, but $\operatorname{im}(A)$ is a subspace of the target \mathbf{R}^{m}. So why should these spaces be related?

18.06.16: The four fundamental subspaces

To answer this question, there's another matrix we can contemplate, the transpose A^{\top}. This is an $n \times m$ matrix, and so it corresponds to a linear map in the other direction:

$$
T_{A^{\top}}: \mathbf{R}^{m} \longrightarrow \mathbf{R}^{n} .
$$

This is the map that takes a column vector \vec{v} and builds the column vector $A^{\top} \vec{v}$, but we can perform a trick here. Instead of thinking about transposing A, we can think about transposing the vectors.

So $\left(\mathbf{R}^{m}\right)^{\vee}$ will be the set of all m-dimensional row vectors; equivalently, the set of all $1 \times m$ matrices; equivalently again, the set of all transposes

$$
\underset{\rightarrow}{v}:=(\vec{v})^{\top}
$$

of vectors $\vec{v} \in \mathbf{R}^{m}$. We call $\left(\mathbf{R}^{m}\right)^{\vee}$ the dual \mathbf{R}^{m}.
So, e.g., if $\vec{v}=\left(\begin{array}{c}1 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right)$, then $\underset{\rightarrow}{v}=\left(\begin{array}{lllll}1 & 0 & -2 & 1 & 0\end{array}\right)$.

The neat thing about row vectors is that they do stuff to column vectors. If $\vec{v} \in \mathbf{R}^{n}$ and $\underset{\rightarrow}{w} \in\left(\mathbf{R}^{n}\right)^{\vee}$, then $\underset{\rightarrow}{w} \vec{v}$ is a number. (Question: How is this related to the dot product?)

If $V \subseteq \mathbf{R}^{n}$ is a vector subspace, then we define

$$
V^{\perp}:=\left\{\underset{\sim}{w} \in\left(\mathbf{R}^{n}\right)^{\vee} \mid \text { for any } \vec{v} \in V, \underset{\rightarrow}{w} \vec{v}=0\right\} \subseteq\left(\mathbf{R}^{n}\right)^{\vee} .
$$

Dually, if $W \subseteq\left(\mathbf{R}^{n}\right)^{\vee}$ is a vector subspace, then we define

$$
W^{\perp}:=\left\{\vec{v} \in \mathbf{R}^{n} \mid \text { for any } \underset{\rightarrow}{w} \in W, \underset{\rightarrow}{w} \vec{v}=0\right\} \subseteq \mathbf{R}^{n} .
$$

Fact: $\operatorname{dim}(V)=n-\operatorname{dim}\left(V^{\perp}\right)$, and $\operatorname{dim}(W)=n-\operatorname{dim}\left(W^{\perp}\right)$. (Why?)

18.06.16: The four fundamental subspaces

Now, since

$$
\left(A^{\top} \vec{v}\right)^{\top}=(\vec{v})^{\top} A=\underset{\sim}{v} A,
$$

we can leave A just as it is, and we can consider the linear map

$$
T_{A}^{\vee}:\left(\mathbf{R}^{m}\right)^{\vee} \longrightarrow\left(\mathbf{R}^{n}\right)^{\vee}
$$

given by the formula

$$
T_{A}^{\vee}(\underset{\sim}{v}):=\underset{\sim}{v} A .
$$

So when we contemplate the kernel and image of A^{\top}, we can think about it via the map T_{A}^{\vee}.

For example, $\operatorname{ker}\left(A^{\top}\right)$ is the set of all vectors $\underset{\rightarrow}{v} \in\left(\mathbf{R}^{n}\right)^{\vee}$ such that $\underset{\rightarrow}{v} A=\underset{\sim}{0}$. This space is also called the cokernel or the left kernel of A. I write coker (A).

We also have the image of A^{\top}, which is the set of all row vectors $\underset{\rightarrow}{w} \in\left(\mathbf{R}^{n}\right)^{\vee}$ such that there exists a row vector $\underset{\rightarrow}{v} \in\left(\mathbf{R}^{m}\right)^{\vee}$ for which $\underset{\rightarrow}{w}=\underset{\rightarrow}{v} A$. This space is also called the coimage of A, or, since its the span of the columns of A^{\top}, which is the span of the rows of A, it is also called the row space of A. I write $\operatorname{coim}(A)$.
18.06.16: The four fundamental subspaces

In all, we have four vector spaces that are what Strang call the fundamental subspaces attached to A :
$\operatorname{ker}(A), \quad \operatorname{im}(A), \quad \operatorname{coker}(A):=\operatorname{ker}\left(A^{\top}\right), \quad \operatorname{coim}(A):=\operatorname{im}\left(A^{\top}\right)$.

Here's the abstract statement of the Rank-Nullity Theorem:
(1) $\operatorname{ker}(A)=\operatorname{coim}(A)^{\perp}$, so that

$$
\operatorname{dim}(\operatorname{ker}(A))=n-\operatorname{dim}(\operatorname{coim}(A)) .
$$

(2) $\operatorname{im}(A)=\operatorname{coker}(A)^{\perp}$, so that

$$
\operatorname{dim}(\operatorname{im}(A))=m-\operatorname{dim}(\operatorname{coker}(A))
$$

(3) A provides a bijection $\operatorname{coim}(A) \cong \operatorname{im}(A)$, so that

$$
\operatorname{dim}(\operatorname{coim}(A))=\operatorname{dim}(\operatorname{im}(A)) .
$$

