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Last time, we started to prove that if 𝑉 ⊆ R𝑛 is a vector subspace, then 𝑉⟂⟂ =
𝑉. Let’s finish up that.

Let’s say that a covector
~
𝑤 ∈ (R𝑛)∨ annihilates a vector ~𝑣 ∈ R𝑛 if and only if

~
𝑤~𝑣 = 0. We’ll also say that

~
𝑤 annihilates a subspace 𝑉 ⊆ R𝑛 if and only if it

annihilates every vector of 𝑉.

So 𝑉⟂ ⊆ (R𝑛)∨ is the space of covectors that annihilate 𝑉, and 𝑉⟂⟂ is the
space of vectors that are annihilated by the covectors that annihilate 𝑉.

So one thing is clear: any vector of𝑉 lies in𝑉⟂⟂. So𝑉 ⊆ 𝑉⟂⟂. But what about
the other direction?
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To show that the two subspaces are equal, it suffices to show that they have the
same dimension. (Why? And how cool is that??)

To prove this, we’ll need to know a key fact:

dim(𝑉⟂) = 𝑛 − dim(𝑉).

This is something that we’ll need to spend some time to understand, and we’re
going to have to talk about notions of orthogonality and orthonormality to get
the story straight. We’ll get to all that after spring break, but first …
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Here’s the abstract statement of the Rank-Nullity Theorem:

(1) ker(𝐴) = coim(𝐴)⟂, so that

dim(ker(𝐴)) = 𝑛 − dim(coim(𝐴)).

(2) im(𝐴) = coker(𝐴)⟂, so that

dim(im(𝐴)) = 𝑚 − dim(coker(𝐴)).

(3) 𝐴 provides a bijection coim(𝐴) ≅ im(𝐴), so that

dim(coim(𝐴)) = dim(im(𝐴)).
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For the rest of today and tomorrow, I want to talk about spacetime.

Let’s operate in the following model for our universe: take R4 (with standard
basis ( ̂𝑒1, ̂𝑒2, ̂𝑒3, ̂𝑒4)). We have the very important matrix

𝐻 = (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) ,

and we write 𝜂(~𝑣, ~𝑤) ≔
~
𝑣𝐻~𝑤.

(We choose units so that 𝑐 = 1; so all speeds are measured as a fraction of the
speed of light.)



18.06.17: Fun with spacetime

For any vector ~𝑣 ∈ R4, write 𝑠2(~𝑣) = 𝜂(~𝑣,~𝑣) ∈ R. If 𝑠2(~𝑣) > 0, we say that ~𝑣
is spacelike; if 𝑠2(~𝑣) < 0, we say that~𝑣 is timelike; if 𝑠2(~𝑣) = 0, we say that~𝑣 is
lightlike.

Let’s draw a picture (forgetting the last coordinate if necessary) of the spacelike,
timelike, and lightlike vectors. Explain this picture from a physical perspective.
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A 4 × 4matrix𝑀 such that

𝐻 =𝑀𝑇𝐻𝑀.

is called a Lorentz transformation.

All Lorentz transformations are invertible. (Why?)

This means that a Lorentz transformation corresponds to a unique basis of
R4; we may call such a basis a Lorentz basis. We may say that these bases are
precisely those in which one may perform measurements and use the laws
of physics. In other words, any physical laws we invent should be invariant
under Lorentz transformations.
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Any 3 × 3 orthogonal matrix 𝑅 (i.e., a matrix 𝑅 such that 𝑅𝑇𝑅 = 𝐼), the block
matrix

(
1 0
0 𝑅
) ,

is a Lorentz transformation.

So if we choose a basis (~𝑥1,~𝑥2,~𝑥3) for R3 such that 𝑥𝑖 ⋅ 𝑥𝑗 = 𝛿𝑖𝑗, then we get a
Lorentz basis ( ̂𝑒1,~𝑥1,~𝑥2,~𝑥3). What is the physical interpretation of this?
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There is a different sort of Lorentz basis as well. Consider an observer at the
origin, moving in the positive 𝑥 direction with speed 𝑢. This observer will
agree with a stationary observer at the origin about the direction of the 𝑥, 𝑦,
and 𝑧 axes, and it will agree with the stationary observer’s measurement of
length in the 𝑦 and 𝑧 directions; however, this observer will see the 𝑥 and 𝑡
directions very differently…
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Write 𝜙 ≔ tanh−1(𝑢). Prove that the matrix

𝛬𝜙 = (

cosh(𝜙) − sinh(𝜙) 0 0
− sinh(𝜙) cosh(𝜙) 0 0
0 0 1 0
0 0 0 1

)

is a Lorentz transformation.This is theLorentz boost in the positive𝑥-direction
at speed 𝑢. Physically, this means that an observer moving in the positive 𝑥
direction with speed 𝑢 will see a vector 𝑣 in spacetime as 𝛬𝜙𝑣.

This accounts for phenomena such as time dilation and Lorentz contraction.
(How?)


