
18.06.20: Projections and

Gram–Schmidt

Lecturer: Barwick

Wednesday, 30 March 2016

18.06.20: Projections and Gram–Schmidt

Once again …the Gram–Schmidt orthogonalization/orthonormalization pro-
cess:

(1) We start with the vector~𝑣1. The only problem there is that it’s not a unit
vector. So we take ~𝑢1 ≔ ~𝑣1, and we normalize it: 𝑢1 ≔

1
‖~𝑢1‖

~𝑢1.

(2) Next, we take the vector~𝑣2, and we remove the best approximation to~𝑣2
that lies in𝑊1:

~𝑢2 ≔ ~𝑣2 − 𝜋𝑊1 (~𝑣2) = ~𝑣2 − 𝜋~𝑢1 (~𝑣2),

and we normalize it: 𝑢2 =
1
‖~𝑢2‖

~𝑢2.

18.06.20: Projections and Gram–Schmidt

(3) Now, we take~𝑣3. Here we have

~𝑢3 ≔ ~𝑣3 − 𝜋𝑊2 (~𝑣3) = ~𝑣3 − 𝜋~𝑢1 (~𝑣3) − 𝜋~𝑢2 (~𝑣3),

and we normalize: 𝑢3 =
1
‖~𝑢3‖

~𝑢3.

18.06.20: Projections and Gram–Schmidt

(4) We can keep doing this. We write

~𝑢𝑖 = ~𝑣𝑖 − 𝜋𝑊𝑖−1 (~𝑣𝑖) = ~𝑣𝑖 − 𝜋~𝑢1 (~𝑣𝑖) − ⋯ − 𝜋~𝑢𝑖−1 (~𝑣𝑖),

and we normalize: 𝑢𝑖 =
1
‖~𝑢𝑖‖

~𝑢𝑖.

18.06.20: Projections and Gram–Schmidt

Animation in R3 … stolen fromWikipedia!

https://upload.wikimedia.org/wikipedia/commons/e/ee/Gram-Schmidt_orthonormalization_process.gif

18.06.20: Projections and Gram–Schmidt

Let’s look at this collection {~𝑣1,~𝑣2,~𝑣3,~𝑣4} of 4 linearly independent vectors in
R5:

{{{{{{{
{{{{{{{
{

(

(

1
1
0
0
0

)

)

, (

(

0
1
1
0
0

)

)

, (

(

0
0
1
1
0

)

)

, (

(

0
0
0
1
1

)

)

}}}}}}}
}}}}}}}
}

,

and let’s begin by just orthogonalizing it, without worrying about normalizing.

18.06.20: Projections and Gram–Schmidt

There are 4 steps:

(1) We won’t even touch the first vector:

~𝑢1 =(

(

1
1
0
0
0

)

)

.

18.06.20: Projections and Gram–Schmidt

(2) Next, let’s remove the projection of~𝑣2 onto ~𝑢1 from~𝑣2:

~𝑢2 =(

(

0
1
1
0
0

)

)

− 1
2
(

(

1
1
0
0
0

)

)

=(

(

−1/2
1/2
1
0
0

)

)

.

18.06.20: Projections and Gram–Schmidt

(3) Next, we remove the projections of~𝑣3 onto ~𝑢1 and ~𝑢2 from~𝑣3:

~𝑢3 =(

(

0
0
1
1
0

)

)

− 0 − 1
3/2
(

(

−1/2
1/2
1
0
0

)

)

=(

(

1/3
−1/3
1/3
1
0

)

)

.

18.06.20: Projections and Gram–Schmidt

(4) Finally, we remove the projections of~𝑣4 onto ~𝑢1, ~𝑢2 and ~𝑢3 from~𝑣4:

~𝑢4 =(

(

0
0
0
1
1

)

)

− 0 − 0 − 1
4/3
(

(

1/3
−1/3
1/3
1
0

)

)

=(

(

−1/4
1/4
−1/4
1/4
1

)

)

.

18.06.20: Projections and Gram–Schmidt

This gives us our desired orthogonal collection of vectors:

{{{{{{{
{{{{{{{
{

(

(

1
1
0
0
0

)

)

, (

(

−1/2
1/2
1
0
0

)

)

, (

(

1/3
−1/3
1/3
1
0

)

)

, (

(

−1/4
1/4
−1/4
1/4
1

)

)

}}}}}}}
}}}}}}}
}

,

andwe note with pride that each~𝑢𝑖 here can be written as a linear combination
of~𝑣1,… ,~𝑣𝑖. Cool.

18.06.20: Projections and Gram–Schmidt

Suppose I want to project the vector~𝑏 ≔ (
1
0
1
) onto the plane𝑊 given by

the equation 𝑥 − 𝑦 + 𝑧 = 0. Here’s what I have to do:

1. Find a basis {~𝑣1,~𝑣2} for that plane. That’s the kernel of the 1 × 3matrix
(1 −1 1).

2. To compute projections, we’re supposed to work with an orthogonal
basis, but {~𝑣1,~𝑣2} probably won’t be orthogonal, so we’ll have to orthog-
onalize to get a new basis {~𝑢1,~𝑢2}

3. Finally, we can compute 𝜋𝑊(~𝑏) = 𝜋~𝑢1 (
~𝑏) + 𝜋~𝑢2 (

~𝑏).

Computationally, this approach may not make you very happy.

18.06.20: Projections and Gram–Schmidt

We can be more efficient by abstracting our process some. (This is a general
lesson in math! Well-adapted abstractions yield efficiency!)

If we’re projecting a vector ~𝑏 ∈ R𝑛 onto a 𝑘-dimensional subspace𝑊 ⊂ R𝑛

spanned by some linearly independent (but not necessarily orthogonal!!) vec-
tors ~𝑎1,… ,~𝑎𝑘, then we know that the difference~𝑏 − 𝜋𝑊(~𝑏) will be perpindic-
ular to𝑊. That means it will be perpindicular to each element of our basis
~𝑎1,… ,~𝑎𝑘.

18.06.20: Projections and Gram–Schmidt

So we have:
(~𝑎𝑖)⊺(~𝑏 − 𝜋𝑊(~𝑏)) = ~𝑎𝑖 ⋅ (~𝑏 − 𝜋𝑊(~𝑏)) = 0

for each 𝑖. Putting all 𝑘 of those equations gives us

𝐴⊺(~𝑏 − 𝜋𝑊(~𝑏)) = 0,

where 𝐴 = (~𝑎1 ⋯ ~𝑎𝑘). (Note that 𝐴 is an 𝑛 × 𝑘matrix, so 𝐴⊺ is a 𝑘 × 𝑛
matrix.) Thus

𝐴⊺~𝑏 = 𝐴⊺𝜋𝑊(~𝑏).

There are probably lots of vectors~𝑐 out there such that 𝐴⊺~𝑏 = 𝐴⊺~𝑐, but one
thing singles out our friend 𝜋𝑊(~𝑏): it lies in𝑊! That is, it is in the image of 𝐴.

18.06.20: Projections and Gram–Schmidt

So … there’s some vector ~𝑤 ∈ R𝑘 such that 𝜋𝑊(~𝑏) = 𝐴~𝑤, and for this vector
we have

𝐴⊺~𝑏 = 𝐴⊺𝐴~𝑤.

Now here’s the (actually kind of surprising) fact: the fact that the vectors
~𝑎1,… ,~𝑎𝑘 are linearly independent actually implies that 𝐴⊺𝐴 (which is a 𝑘 × 𝑘
matrix) is invertible. That means that the equation above actually uniquely
specifies ~𝑤 in terms of~𝑏.

18.06.20: Projections and Gram–Schmidt

We can thus write a formula for ~𝑤:

~𝑤 = (𝐴⊺𝐴)−1𝐴⊺~𝑏,

and we get a formula for 𝜋𝑊(~𝑏) as well:

𝜋𝑊(~𝑏) = 𝐴~𝑤 = 𝐴(𝐴⊺𝐴)−1𝐴⊺~𝑏.

18.06.20: Projections and Gram–Schmidt

Let’s appreciate how good this is: let’s write a formula for the projection of any
vector ~𝑏 ∈ R3 onto the plane𝑊 given by the equation 𝑥 − 𝑦 + 𝑧 = 0. Here’s
what I have to do:

1. Find a basis {~𝑣1,~𝑣2} for that plane. That’s the kernel of the 1 × 3matrix
(1 −1 1).

2. Now we put that basis into a matrix 𝐴, and we compute 𝐴(𝐴⊺𝐴)−1𝐴⊺.

Bam! One-stop shopping for projections.

18.06.20: Projections and Gram–Schmidt

We can use this to modify Gram–Schmidt slightly. Let’s try it with

{{{{{{{
{{{{{{{
{

(

(

1
1
0
0
0

)

)

, (

(

0
1
1
0
0

)

)

, (

(

0
0
1
1
0

)

)

, (

(

0
0
0
1
1

)

)

}}}}}}}
}}}}}}}
}

,

