### 18.06.20: Projections and Gram-Schmidt

Lecturer: Barwick

Wednesday, 30 March 2016

### 18.06.20: Projections and Gram-Schmidt

Once again ...the Gram-Schmidt orthogonalization/orthonormalization process:
(1) We start with the vector $\vec{v}_{1}$. The only problem there is that it's not a unit vector. So we take $\vec{u}_{1}:=\vec{v}_{1}$, and we normalize it: $\widehat{u}_{1}:=\frac{1}{\left\|\vec{u}_{1}\right\|} \vec{u}_{1}$.
(2) Next, we take the vector $\vec{v}_{2}$, and we remove the best approximation to $\vec{v}_{2}$ that lies in $W_{1}$ :

$$
\vec{u}_{2}:=\vec{v}_{2}-\pi_{W_{1}}\left(\vec{v}_{2}\right)=\vec{v}_{2}-\pi_{\vec{u}_{1}}\left(\vec{v}_{2}\right),
$$

and we normalize it: $\widehat{u}_{2}=\frac{1}{\left\|\vec{u}_{\vec{u}}\right\|} \vec{u}_{2}$.

### 18.06.20: Projections and Gram-Schmidt

(3) Now, we take $\vec{v}_{3}$. Here we have

$$
\vec{u}_{3}:=\vec{v}_{3}-\pi_{W_{2}}\left(\vec{v}_{3}\right)=\vec{v}_{3}-\pi_{\vec{u}_{1}}\left(\vec{v}_{3}\right)-\pi_{\vec{u}_{2}}\left(\vec{v}_{3}\right),
$$

and we normalize: $\widehat{u}_{3}=\frac{1}{\left\|\vec{u}_{3}\right\|} \vec{u}_{3}$.

### 18.06.20: Projections and Gram-Schmidt

(4) We can keep doing this. We write

$$
\vec{u}_{i}=\vec{v}_{i}-\pi_{W_{i-1}}\left(\vec{v}_{i}\right)=\vec{v}_{i}-\pi_{\vec{u}_{1}}\left(\vec{v}_{i}\right)-\cdots-\pi_{\vec{u}_{i-1}}\left(\vec{v}_{i}\right),
$$

and we normalize: $\widehat{u}_{i}=\frac{1}{\left\|\vec{u}_{i}\right\|} \vec{u}_{i}$.

### 18.06.20: Projections and Gram-Schmidt

Animation in $\mathbf{R}^{3} \ldots$ stolen from Wikipedia!

### 18.06.20: Projections and Gram-Schmidt

Let's look at this collection $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ of 4 linearly independent vectors in $\mathrm{R}^{5}$ :

and let's begin by just orthogonalizing it, without worrying about normalizing.

### 18.06.20: Projections and Gram-Schmidt

There are 4 steps:
(1) We won't even touch the first vector:

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

### 18.06.20: Projections and Gram-Schmidt

(2) Next, let's remove the projection of $\vec{v}_{2}$ onto $\vec{u}_{1}$ from $\vec{v}_{2}$ :

$$
\vec{u}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 \\
0 \\
0
\end{array}\right)
$$

### 18.06.20: Projections and Gram-Schmidt

(3) Next, we remove the projections of $\vec{v}_{3}$ onto $\vec{u}_{1}$ and $\vec{u}_{2}$ from $\vec{v}_{3}$ :

$$
\vec{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right)-0-\frac{1}{3 / 2}\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3 \\
1 \\
0
\end{array}\right) .
$$

### 18.06.20: Projections and Gram-Schmidt

(4) Finally, we remove the projections of $\vec{v}_{4}$ onto $\vec{u}_{1}, \vec{u}_{2}$ and $\vec{u}_{3}$ from $\vec{v}_{4}$ :

$$
\vec{u}_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)-0-0-\frac{1}{4 / 3}\left(\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 4 \\
1 / 4 \\
-1 / 4 \\
1 / 4 \\
1
\end{array}\right) .
$$

### 18.06.20: Projections and Gram-Schmidt

This gives us our desired orthogonal collection of vectors:

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 / 4 \\
1 / 4 \\
-1 / 4 \\
1 / 4 \\
1
\end{array}\right)\right\}
$$

and we note with pride that each $\vec{u}_{i}$ here can be written as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{i}$. Cool.

Suppose I want to project the vector $\vec{b}:=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ onto the plane $W$ given by the equation $x-y+z=0$. Here's what I have to do:

1. Find a basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for that plane. That's the kernel of the $1 \times 3$ matrix $\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)$.
2. To compute projections, we're supposed to work with an orthogonal basis, but $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ probably won't be orthogonal, so we'll have to orthogonalize to get a new basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$
3. Finally, we can compute $\pi_{W}(\vec{b})=\pi_{\vec{u}_{1}}(\vec{b})+\pi_{\vec{u}_{2}}(\vec{b})$.

Computationally, this approach may not make you very happy.

### 18.06.20: Projections and Gram-Schmidt

We can be more efficient by abstracting our process some. (This is a general lesson in math! Well-adapted abstractions yield efficiency!)

If we're projecting a vector $\vec{b} \in \mathbf{R}^{n}$ onto a $k$-dimensional subspace $W \subset \mathbf{R}^{n}$ spanned by some linearly independent (but not necessarily orthogonal!!) vectors $\vec{a}_{1}, \ldots, \vec{a}_{k}$, then we know that the difference $\vec{b}-\pi_{W}(\vec{b})$ will be perpindicular to $W$. That means it will be perpindicular to each element of our basis $\vec{a}_{1}, \ldots, \vec{a}_{k}$.

### 18.06.20: Projections and Gram-Schmidt

So we have:

$$
\left(\vec{a}_{i}\right)^{\top}\left(\vec{b}-\pi_{W}(\vec{b})\right)=\vec{a}_{i} \cdot\left(\vec{b}-\pi_{W}(\vec{b})\right)=0
$$

for each $i$. Putting all $k$ of those equations gives us

$$
A^{\top}\left(\vec{b}-\pi_{W}(\vec{b})\right)=0
$$

where $A=\left(\begin{array}{lll}\vec{a}_{1} & \cdots & \vec{a}_{k}\end{array}\right)$. (Note that $A$ is an $n \times k$ matrix, so $A^{\top}$ is a $k \times n$ matrix.) Thus

$$
A^{\top} \vec{b}=A^{\top} \pi_{W}(\vec{b})
$$

There are probably lots of vectors $\vec{c}$ out there such that $A^{\top} \vec{b}=A^{\top} \vec{c}$, but one thing singles out our friend $\pi_{W}(\vec{b})$ : it lies in $W$ ! That is, it is in the image of $A$.

### 18.06.20: Projections and Gram-Schmidt

So ... there's some vector $\vec{w} \in \mathbf{R}^{k}$ such that $\pi_{W}(\vec{b})=A \vec{w}$, and for this vector we have

$$
A^{\top} \vec{b}=A^{\top} A \vec{w}
$$

Now here's the (actually kind of surprising) fact: the fact that the vectors $\vec{a}_{1}, \ldots, \vec{a}_{k}$ are linearly independent actually implies that $A^{\top} A$ (which is a $k \times k$ matrix) is invertible. That means that the equation above actually uniquely specifies $\vec{w}$ in terms of $\vec{b}$.

### 18.06.20: Projections and Gram-Schmidt

We can thus write a formula for $\vec{w}$ :

$$
\vec{w}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

and we get a formula for $\pi_{W}(\vec{b})$ as well:

$$
\pi_{W}(\vec{b})=A \vec{w}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} .
$$

### 18.06.20: Projections and Gram-Schmidt

Let's appreciate how good this is: let's write a formula for the projection of any vector $\vec{b} \in \mathbf{R}^{3}$ onto the plane $W$ given by the equation $x-y+z=0$. Here's what I have to do:

1. Find a basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for that plane. That's the kernel of the $1 \times 3$ matrix

$$
\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right)
$$

2. Now we put that basis into a matrix $A$, and we compute $A\left(A^{\top} A\right)^{-1} A^{\top}$.

Bam! One-stop shopping for projections.

### 18.06.20: Projections and Gram-Schmidt

We can use this to modify Gram-Schmidt slightly. Let's try it with


