18.06.21: Last bit on

Lecturer: Barwick

Friday, April Fool's Day 2016

18.06.21: Last bit on projections

Let's remember our story. We have a vector $\vec{b} \in \mathbf{R}^{n}$. We have a k-dimensional subspace $W \subseteq \mathbf{R}^{n}$ with basis $\left\{\vec{a}_{1}, \ldots, \vec{a}_{k}\right\}$. We are trying to compute the projection $\pi_{W}(\vec{b})$ of \vec{b} onto W.

The first method we discussed was to apply Gram-Schmidt to $\vec{a}_{1}, \ldots, \vec{a}_{k}$ to get an orthogonal basis $\vec{u}_{1}, \ldots, \vec{u}_{k}$, and then write

$$
\pi_{W}(\vec{b})=\sum_{i=1}^{k} \pi_{\overrightarrow{u_{i}}}(\vec{b})
$$

18.06.21: Last bit on projections

The second method was a simple formula: one forms the $n \times k$ matrix

$$
A=\left(\begin{array}{lll}
\vec{a}_{1} & \cdots & \vec{a}_{k}
\end{array}\right)
$$

and we write

$$
\pi_{W}(\vec{b})=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

To deduce this formula, we only used two facts about the projection $\pi_{W}(\vec{b})$:
(1) $\vec{b}-\pi_{W}(\vec{b})$ is perpindicular to W, and
(2) $\pi_{W}(\vec{b}) \in W$.

18.06.21: Last bit on projections

As always, we should test out the extreme cases. When $k=n$, we're "projecting" \vec{b} onto the whole damn \mathbf{R}^{n}. In other words, we're not doing anything. And the formula above matches that, because $\left(A^{\top} A\right)^{-1}=A^{-1}\left(A^{\top}\right)^{-1}$.

Onthe other hand, when $k=1$, our matrix A is just the column vector \vec{a}_{1} itself. Then we get

$$
\pi_{W}(\vec{b})=\vec{a}_{1}\left(\vec{a}_{1}^{\top} \vec{a}_{1}\right)^{-1} \vec{a}_{1}^{\top} \vec{b}=\vec{a}_{1} \frac{\vec{a}_{1} \cdot \vec{b}}{\vec{a}_{1} \cdot \vec{a}_{1}}=\pi_{\vec{a}_{1}}(\vec{b}) .
$$

Good.

18.06.21: Last bit on projections

So let's appreciate how good this is: let's project any vector $\vec{b} \in \mathbf{R}^{3}$ onto the plane W given by the equation $x-y+z=0$. Here's what I have to do:
(1) Find a basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ for that plane. That's the kernel of the 1×3 matrix

$$
\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right)
$$

(2) Now we put that basis into a matrix A, and we compute $A\left(A^{\top} A\right)^{-1} A^{\top}$.

18.06.21: Last bit on projections

Suppose A is an $n \times k$ matrix with $\operatorname{ker}(A)=0$. Now set

$$
\Pi_{A}:=A\left(A^{\top} A\right)^{-1} A^{\top} .
$$

This is our orthogonal projection matrix onto the image of A.
Question. What is Π_{A}^{2} ? Explain why first computationally, and then geometrically.

There's one thing we need to double-check with this formula before we stop. I claimed that $A^{\top} A$ is invertible when $\vec{a}_{1}, \ldots, \vec{a}_{k}$ are linearly independent. To prove that, it suffices to show that $\operatorname{ker}\left(A^{\top} A\right)=\operatorname{ker}(A)$. (Why??)

Clearly if $A \vec{x}=\overrightarrow{0}$, then $A^{\top} A \vec{x}=\overrightarrow{0}$, so $\operatorname{ker}(A) \subseteq \operatorname{ker}\left(A^{\top} A\right)$.
Let's prove the other inclusion. If $A^{\top} A \vec{x}=\overrightarrow{0}$, then

$$
\|A \vec{x}\|^{2}=(A \vec{x}) \cdot(A \vec{x})=\vec{x}^{\top} A^{\top} A \vec{x}=0 .
$$

So $A \vec{x}=0$. This proves that $\operatorname{ker}(A) \supseteq \operatorname{ker}\left(A^{\top} A\right)$.
(Note that I didn't really use that $\vec{a}_{1}, \ldots, \vec{a}_{k}$ are linearly independent in that proof. It's always the case that $\operatorname{ker}\left(A^{\top} A\right)=\operatorname{ker}(A)$.)
18.06.21: Last bit on projections

EVEXAMIIICOVERS

 (except for the fun stuff on special relativity)That's Lectures 1-21, excluding 17 and 18. It's also the first 4 chapters of Strang, excluding 4.3 .

OK ... sigh ... determinants.
There are two serious pedagogical problems with introducing determinants:
(1) They're extremely useful, but generally extremely annoying to compute.
(2) They have beautiful formal properties, but to show you why, I'd need to introduce a whole pack of auxiliary, abstract, notions that you won't see again until a much later math course.

No matter what, it's hard to make people happy when talking about determinants.

