18.06.23: Determinants \& Permutations

Lecturer: Barwick

Friday, 8 April 2016

18.06.23: Determinants \& Permutations

So here's an $n \times n$ matrix

$$
A=\left(\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{n}
\end{array}\right)
$$

and we have this number

$$
\operatorname{det}(A)=\operatorname{det}\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right) \in \mathbf{R}
$$

that measures the signed n-dimensional volume of the parallelopiped spanned by $\vec{v}_{1}, \ldots, \vec{v}_{n}$.

Let's list the things we know about $\operatorname{det}(A)$.

18.06.23: Determinants \& Permutations

(1) Normalization. The identity matrix has determinant 1 :

$$
\operatorname{det}(I)=\operatorname{det}\left(\hat{e}_{1}, \cdots, \hat{e}_{n}\right)=1 .
$$

(2) Multilinearity. For any real numbers $r, s \in \mathbf{R}$,

$$
\begin{aligned}
\operatorname{det}\left(\vec{v}_{1}, \cdots, r \vec{x}_{i}+s \vec{y}_{i}, \cdots, \vec{v}_{n}\right)= & r \operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{x}_{i}, \cdots, \vec{v}_{n}\right) \\
& +s \operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{y}_{i}, \cdots, \vec{v}_{n}\right) .
\end{aligned}
$$

18.06.23: Determinants \& Permutations

(3) Alternation. The determinant

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \cdots, \vec{v}_{n}\right)=0
$$

if any two of the $\vec{v}_{i} \mathrm{~s}$ are equal.

These are the core, defining properties of det.

18.06.23: Determinants \& Permutations

Here are more properties, which we deduced from the three core properties above:
(4) Multiplying a row or column by a number $r \in \mathbf{R}$ multiplies the determinant by that r.
(5) Swapping two rows or columns in A multiplies the determinant by a -1 .
(6) Adding a multiple of a row or column onto another row or column doesn't change the determinant.

18.06.23: Determinants \& Permutations

And here are some general computational facts we extract from these properties.
(8) $\operatorname{det}(A) \neq 0$ if and only if A is invertible.
(9) $\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)$.
(10) $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$. (Why?)
(11) $\operatorname{det} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\prod_{i=1}^{n} \lambda_{i}$.
(12) More generally, if A is triangular, then $\operatorname{det}(A)$ is the product of the entries along the diagonal. (Why?)

18.06.23: Determinants \& Permutations

Let's compute the determinant of the following matrices:

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right),\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 3 \\
2 & 2 & 3 & 4
\end{array}\right) \\
\left(\begin{array}{cccc}
1 & 1 & 2 & 5 \\
1 & 2 & 5 & 14 \\
2 & 5 & 14 & 42 \\
5 & 14 & 42 & 132
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 2 & 5 & 14 \\
2 & 5 & 5 & 14 \\
5 & 14 & 42 & 132 \\
14 & 42 & 132 & 429
\end{array}\right)
\end{gathered}
$$

18.06.23: Determinants \& Permutations

I was half-joking about the last two; this is actually a neat little piece of mathematics: there's only one sequence of integers $c_{0}, c_{1}, c_{2}, \ldots$ such that for any $n \geq 1$,

$$
\operatorname{det}\left(c_{i+j-2}\right)=\operatorname{det}\left(c_{i+j-1}\right)=1
$$

These are called the Catalan numbers, and your mathematical life isn't complete until you've read about them! (I was going to put a problem about these on the homework, but I thought that might be too much.)

18.06.23: Determinants \& Permutations

Suppose $\sigma:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ a permutation of $\{1, \ldots, n\}$ - i.e., a bijection from that set to itself.

One can express a permutation very compactly, by writing down the matrix

$$
P_{\sigma}=\left(\begin{array}{lll}
\hat{e}_{\sigma(1)} & \cdots & \hat{e}_{\sigma(n)}
\end{array}\right)
$$

called the permutation matrix corresponding to σ.
This is great, because matrix multiplication corresponds to composition of permutations:

$$
P_{\sigma \circ \tau}=P_{\sigma} P_{\tau} \quad \text { and } \quad P_{i d}=I .
$$

18.06.23: Determinants \& Permutations

Also, these matrices are orthogonal; in fact,

$$
P_{\sigma}^{\top}=P_{\sigma}^{-1}=P_{\sigma^{-1}} .
$$

18.06.23: Determinants \& Permutations

Here's a permutation matrix for $n=5$:

$$
\left(\begin{array}{l}
\hat{e}_{2} \\
\hat{e}_{4} \\
\hat{e}_{1} \\
\hat{e}_{3} \\
\hat{e}_{5}
\end{array}\right)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

What's its determinant?

18.06.23: Determinants \& Permutations

This is a general pattern: the determinant of a permutation matrix P_{σ} is called the sign of the permutation σ :

$$
\operatorname{sgn}(\sigma):=\operatorname{det}\left(P_{\sigma}\right)
$$

In effect, it's

$$
(-1)^{\text {number of swaps in } \sigma} .
$$

What's weird about this is that you can imagine performing more or fewer swaps to get sigma. The magic of determinants is telling you that the parity of the number of swaps stays the same!

Note that $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$. (Why?)

18.06.23: Determinants \& Permutations

It turns out that permutations give you a formula for the determinant of any matrix $A=\left(\begin{array}{ccc}\vec{v}_{1} & \cdots & \vec{v}_{n}\end{array}\right)$. Let's see why.

First, the j-th column \vec{v}_{j} can be written as

$$
\vec{v}_{j}=\sum_{k=1}^{n} a_{k, j} \hat{e}_{k} .
$$

18.06.23: Determinants \& Permutations

The multilinearity of det can then be deployed:

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\sum_{k(1)=1}^{n} a_{k(1), j} \hat{e}_{k(1)}, \ldots, \sum_{k(n)=1}^{n} a_{k(n), j} \hat{e}_{k(n)}\right) \\
& =\sum_{k(1)=1}^{n} \cdots \sum_{k(n)=1}^{n}\left(\prod_{i=1}^{n} a_{k(i), i}\right) \operatorname{det}\left(\hat{e}_{k(1)}, \ldots, \hat{e}_{k(n)}\right)
\end{aligned}
$$

Now all those sums can be combined into one sum. You're summing over the set E_{n} of all maps $k:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$:

$$
\operatorname{det}(A)=\sum_{k \in E_{n}}\left(\prod_{i=1}^{n} a_{k(i), i}\right) \operatorname{det}\left(\hat{e}_{k(1)}, \ldots, \hat{e}_{k(n)}\right) .
$$

18.06.23: Determinants \& Permutations

$$
\operatorname{det}(A)=\sum_{k \in E_{n}}\left(\prod_{i=1}^{n} a_{k(i), i}\right) \operatorname{det}\left(\hat{e}_{k(1)}, \ldots, \hat{e}_{k(n)}\right) .
$$

Now we use the alternatingness: if any two columns are equal, then the determinant is zero. So any summand in which $k:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ is not injective doesn't appear:

$$
\operatorname{det}(A)=\sum_{\sigma \in \Sigma_{n}}\left(\prod_{i=1}^{n} a_{\sigma(i), i}\right) \operatorname{det}\left(\hat{e}_{\sigma(1)}, \ldots, \hat{e}_{\sigma(n)}\right),
$$

where Σ_{n} is the set of permutations of $\{1, \ldots, n\}$.

18.06.23: Determinants \& Permutations

Now we have:

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma \in \Sigma_{n}}\left(\prod_{i=1}^{n} a_{\sigma(i), i}\right) \operatorname{det}\left(\hat{e}_{\sigma(1)}, \ldots, \hat{e}_{\sigma(n)}\right) \\
& =\sum_{\sigma \in \Sigma_{n}}\left(\prod_{i=1}^{n} a_{\sigma(i), i}\right) \operatorname{det}\left(P_{\sigma}\right) \\
& =\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma)\left(\prod_{i=1}^{n} a_{\sigma(i), i}\right) .
\end{aligned}
$$

18.06.23: Determinants \& Permutations

$$
\operatorname{det}(A)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma)\left(\prod_{i=1}^{n} a_{\sigma(i), i}\right)
$$

There it is - the Leibniz formula for the determinant.
Do you care? Well, if you're trying to program a computer to compute determinants, no. Evaluating this formula involves $\Omega(n!n)$ operations. Gaussian elimination uses $O\left(n^{3}\right)$ operations. We have a winner.

On the other hand, the fact that there is a formula is vaguely reassuring. But there's another advantage ...

18.06.23: Determinants \& Permutations

Think of the determinant as a function from $\mathbf{R}^{n^{2}} \longrightarrow \mathbf{R}$; this formula expresses that function as a polynomial in n^{2} variables. That means that it's continuous and infinitely differentiable. So this leads us to the following result:

Proposition. Suppose $A=\left(a_{i, j}\right)$ an invertible $n \times n$ matrix. Then there exists an $\varepsilon>0$ such that if $A^{\prime}=\left(a_{i, j}^{\prime}\right)$ is an $n \times n$ matrix such that $\left|a_{i, j}^{\prime}-a_{i, j}\right|<\varepsilon$, then A^{\prime} is invertible too.

That is, invertible matrices are stable under small perturbations.

18.06.23: Determinants \& Permutations

Here's another wacky-sounding consequence. Suppose $L \subseteq \mathbf{R}^{n^{2}}$ is a line. Then if there exists one point on L that corresponds to an invertible matrix, then all but finitely many points on L correspond to invertible matrices.

18.06.23: Determinants \& Permutations

Question. Suppose A an $n \times n$ matrix. For how many real numbers $t \in \mathbf{R}$ is $A+t I$ is invertible (none, finitely many, infinitely many, all)?

