18.06.24: Eigenvalues

Lecturer: Barwick

Monday, 11 April 2016

Last time, we discovered that for any $n \times n$ matrix A with entries $a_{i,j}$, all but finitely many of the matrices tI - A (for $t \in \mathbf{R}$) are invertible. ("Good things happen almost all the time.")

Let's think about the values of *t* fro which tI - A is non-invertible; i.e., that det(tI - A) = 0.

Let's think of this as a function on the reals:

 $p(t) = \det(tI - A).$

Using formula for the determinant last time:

$$p(t) = \sum_{\sigma \in \Sigma_n} \operatorname{sgn}(\sigma) \left(\prod_{i=1}^n \alpha_{\sigma(i),i}(t) \right),$$

where

$$\alpha_{\sigma(i),i}(t) = a_{\sigma(i),i} \quad \text{if } \sigma(i) \neq i,$$

and

$$\alpha_{\sigma(i),i}(t) = t - a_{i,i}$$
 if $\sigma(i) = i$.

$$p(t) = \sum_{\sigma \in \Sigma_n} \operatorname{sgn}(\sigma) \left(\prod_{i=1}^n \alpha_{\sigma(i),i}(t) \right),$$

where

$$\alpha_{\sigma(i),i}(t) = a_{\sigma(i),i} \quad \text{if } \sigma(i) \neq i,$$

and

$$\alpha_{\sigma(i),i}(t) = t - a_{i,i} \quad \text{if } \sigma(i) = i.$$

This formula isn't much for computation, but it tells us something qualitative: this function p(t) is in fact a polynomial of degree *n*, called the *characteristic polynomial* of *A*.

Question. For how many *t* is tI - A singular? That is, for how many *t* is p(t) = det(tI - A) = 0?

Question. For how many *t* is tI - A singular? That is, for how many *t* is p(t) = det(tI - A) = 0?

Answer. At most n.

What's going on here? We started with a matrix A, and we became curious (for no good reason) about when the matrix tI - A is invertible.

The answer turned out to be: it's always invertible, except when *t* is one of the (at most *n*) roots of the polynomial $p(t) = \det(tI - A)$ of degree *n*.

Let's do an example:

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right).$$

Now the characteristic polynomial is

$$p(t) = \det(tI - A) = \begin{pmatrix} t - 2 & -1 \\ -1 & t - 2 \end{pmatrix} = t^2 - 4t + 3 = (t - 3)(t - 1).$$

So tI - A is invertible unless $t \in \{1, 3\}$.

This is all nice, but it doesn't mean anything, does it ... ?

Question. What's the significance of the number

0. 7390851332 1516064165 5312087673 8734040134 1175890075 7464965680 6357732846 5488354759 4599376106 9317665318 49801246 ... ???

If you ever played with a calculator as a kid, you may have typed a number in (in radian mode) and hit "cos" a large number of times. It would stabilize around this value. This is the unique *fixed point* for cosine, i.e., the unique solution of the equation

 $\cos x = x$.

An $n \times n$ matrix A tends not to have many *fixed vectors* (i.e., vectors \vec{v} such that $A\vec{v} = \vec{v}$), except for $\vec{0}$.

For example, if A = 3I, then no nonzero vector is a fixed vector!

More generally, *A* has a nonzero fixed vector if and only if A-I is noninvertible. And one of the things we learned is that *good things happen almost all the time*; in this case, A - I is almost always invertible!

Since fixed vectors are pretty rare, it's not so interesting to look for them. But, in a sense, we can ask for *fixed directions* rather than fixed vectors.

In other words, we can look for *lines* $L \subseteq \mathbb{R}^n$ such that for any $\vec{v} \in L$, one has $A\vec{v} \in L$. In other words, we can ask about lines that are not moved by A.

Now a single nonzero vector $\vec{v} \in L$ spans *L*, of course, so when we say that $A\vec{v} \in L$, we're really saying that $A\vec{v} = \lambda\vec{v}$ for some $\lambda \in \mathbf{R}$, or, equivalently,

$$(\lambda I - A)\vec{v} = \lambda \vec{v} - A\vec{v} = \vec{0}.$$

But the only time that could ever happen is if $\lambda I - A$ has a nonzero kernel – or equivalently if $\lambda I - A$ is singular.

But wait. Didn't we just find out that there are only finitely many numbers $\lambda \in \mathbf{R}$ for which $\lambda I - A$ is singular? They're the roots of the characteristic polynomial

 $p(t) = \det(tI - A).$

Let's look again at our matrix

$$A = \left(\begin{array}{rrr} 2 & 1 \\ 1 & 2 \end{array}\right).$$

We found out that tI - A is invertible unless $t \in \{1, 3\}$. It's easy to see that

dim ker
$$(I - A) = 1$$
 and dim ker $(3I - A) = 1$.

So there are two lines L_1 and L_3 out there:

- * every $\vec{v} \in L_1$ is fixed by *A*, so that $A\vec{v} = \vec{v}$;
- * every $\vec{v} \in L_3$ is scaled by 3 by A, so that $A\vec{v} = 3\vec{v}$.

WIKIPEDIA ANIMATION.

Definition. If *A* is an $n \times n$ matrix, then any number $\lambda \in \mathbf{R}$ such that tI - A is invertible – that is any λ that is a root of the polynomial $p(t) = \det(tI - A)$ – is called an *eigenvalue* of *A*.

If λ is an eigenvalue of A, then the subspace ker $(\lambda I - A) \subseteq \mathbb{R}^n$ is called the *eigenspace* for A corresponding to λ .

If $\vec{v} \in \ker(\lambda I - A)$ is nonzero, then \vec{v} is called an *eigenvector* with eigenvalue λ .

Question. What are the eigenvalues and eigenvectors of a diagonal matrix?