18.06.24: Eigenvalues

Lecturer: Barwick

Monday, 11 April 2016

18.06.24: Eigenvalues

Last time, we discovered that for any $n \times n$ matrix A with entries $a_{i, j}$, all but finitely many of the matrices $t I-A($ for $t \in \mathbf{R}$) are invertible. ("Good things happen almost all the time.")

Let's think about the values of t fro which $t I-A$ is non-invertible; i.e., that $\operatorname{det}(t I-A)=0$.

18.06.24: Eigenvalues

Let's think of this as a function on the reals:

$$
p(t)=\operatorname{det}(t I-A) .
$$

Using formula for the determinant last time:

$$
p(t)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma)\left(\prod_{i=1}^{n} \alpha_{\sigma(i), i}(t)\right)
$$

where

$$
\alpha_{\sigma(i), i}(t)=a_{\sigma(i), i} \quad \text { if } \sigma(i) \neq i,
$$

and

$$
\alpha_{\sigma(i), i}(t)=t-a_{i, i} \quad \text { if } \sigma(i)=i
$$

$$
p(t)=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma)\left(\prod_{i=1}^{n} \alpha_{\sigma(i), i}(t)\right)
$$

where

$$
\alpha_{\sigma(i), i}(t)=a_{\sigma(i), i} \quad \text { if } \sigma(i) \neq i,
$$

and

$$
\alpha_{\sigma(i), i}(t)=t-a_{i, i} \quad \text { if } \sigma(i)=i .
$$

This formula isn't much for computation, but it tells us something qualitative: this function $p(t)$ is in fact a polynomial of degree n, called the characteristic polynomial of A.

18.06.24: Eigenvalues

Question. For how many t is $t I-A$ singular? That is, for how many t is $p(t)=\operatorname{det}(t I-A)=0$?

18.06.24: Eigenvalues

Question. For how many t is $t I-A$ singular? That is, for how many t is $p(t)=\operatorname{det}(t I-A)=0$?

Answer. At most n. \square

18.06.24: Eigenvalues

What's going on here? We started with a matrix A, and we became curious (for no good reason) about when the matrix $t I-A$ is invertible.

The answer turned out to be: it's always invertible, except when t is one of the (at most n) roots of the polynomial $p(t)=\operatorname{det}(t I-A)$ of degree n.

18.06.24: Eigenvalues

Let's do an example:

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Now the characteristic polynomial is

$$
p(t)=\operatorname{det}(t I-A)=\left(\begin{array}{cc}
t-2 & -1 \\
-1 & t-2
\end{array}\right)=t^{2}-4 t+3=(t-3)(t-1) .
$$

So $t I-A$ is invertible unless $t \in\{1,3\}$.
This is all nice, but it doesn't mean anything, does it ... ?

18.06.24: Eigenvalues

Question. What's the significance of the number
0. 73908513321516064165531208767387340401341175890075 74649656806357732846548835475945993761069317665318 49801246 ... ???

18.06.24: Eigenvalues

If you ever played with a calculator as a kid, you may have typed a number in (in radian mode) and hit "cos" a large number of times. It would stabilize around this value. This is the unique fixed point for cosine, i.e., the unique solution of the equation

$$
\cos x=x
$$

18.06.24: Eigenvalues

An $n \times n$ matrix A tends not to have many fixed vectors (i.e., vectors \vec{v} such that $A \vec{v}=\vec{v}$), except for $\overrightarrow{0}$.

For example, if $A=3 I$, then no nonzero vector is a fixed vector!

More generally, A has a nonzero fixed vector if and only if $A-I$ is noninvertible. And one of the things we learned is that good things happen almost all the time; in this case, $A-I$ is almost always invertible!

18.06.24: Eigenvalues

Since fixed vectors are pretty rare, it's not so interesting to look for them. But, in a sense, we can ask for fixed directions rather than fixed vectors.

In other words, we can look for lines $L \subseteq \mathbf{R}^{n}$ such that for any $\vec{v} \in L$, one has $A \vec{v} \in L$. In other words, we can ask about lines that are not moved by A.

18.06.24: Eigenvalues

Now a single nonzero vector $\vec{v} \in L$ spans L, of course, so when we say that $A \vec{v} \in L$, we're really saying that $A \vec{v}=\lambda \vec{v}$ for some $\lambda \in \mathbf{R}$, or, equivalently,

$$
(\lambda I-A) \vec{v}=\lambda \vec{v}-A \vec{v}=\overrightarrow{0} .
$$

But the only time that could ever happen is if $\lambda I-A$ has a nonzero kernel or equivalently if $\lambda I-A$ is singular.

18.06.24: Eigenvalues

But wait. Didn't we just find out that there are only finitely many numbers $\lambda \in \mathbf{R}$ for which $\lambda I-A$ is singular? They're the roots of the characteristic polynomial

$$
p(t)=\operatorname{det}(t I-A) .
$$

18.06.24: Eigenvalues

Let's look again at our matrix

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

We found out that $t I-A$ is invertible unless $t \in\{1,3\}$. It's easy to see that

$$
\operatorname{dim} \operatorname{ker}(I-A)=1 \quad \text { and } \quad \operatorname{dim} \operatorname{ker}(3 I-A)=1
$$

So there are two lines L_{1} and L_{3} out there:

* every $\vec{v} \in L_{1}$ is fixed by A, so that $A \vec{v}=\vec{v}$;
* every $\vec{v} \in L_{3}$ is scaled by 3 by A, so that $A \vec{v}=3 \vec{v}$.

18.06.24: Eigenvalues

WIKIPEDIA ANIMATION.

18.06.24: Eigenvalues

Definition. If A is an $n \times n$ matrix, then any number $\lambda \in \mathbf{R}$ such that $t I-A$ is invertible - that is any λ that is a root of the polynomial $p(t)=\operatorname{det}(t I-A)$ - is called an eigenvalue of A.

If λ is an eigenvalue of A, then the subspace $\operatorname{ker}(\lambda I-A) \subseteq \mathbf{R}^{n}$ is called the eigenspace for A corresponding to λ.

If $\vec{v} \in \operatorname{ker}(\lambda I-A)$ is nonzero, then \vec{v} is called an eigenvector with eigenvalue λ.

18.06.24: Eigenvalues

Question. What are the eigenvalues and eigenvectors of a diagonal matrix?

