18.06.26: More on similarity and diagonalizability

Lecturer: Barwick

Shadows are harshest when there is only one lamp. — James Richardson

Let's get back to similarity.

Suppose I have a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ of \mathbb{R}^n , and suppose A is an $n \times n$ matrix, giving us a linear map $T_A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Maybe T_A is actually more interesting to us than A, and maybe $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a better basis for us than the standard basis. So we want to express the action of T_A entirely in terms of $\{\vec{v}_1, \dots, \vec{v}_n\}$.

🗧 18.06.26: More on similarity and diagonalizability

When we look at our chosen basis $\{\vec{v}_1, \dots, \vec{v}_n\}$, we can write each vector $T_A(\vec{v}_j)$ in a unique fashion as a linear combination of the basis vectors:

$$T_A(\vec{v}_j) = \sum_{i=1}^n \beta_{ij} \vec{v}_i$$

We could have put all those coefficients together into a new matrix

$$B=(\beta_{ij}).$$

We say that *B* represents T_A with respect to the basis $\{\vec{v}_1, \ldots, \vec{v}_n\}$.

If we'd done that with the standard basis, we'd have the matrix *A* staring back at us. But with a different basis, *B* isn't *A*. So how do they relate??

🕂 18.06.26: More on similarity and diagonalizability

So, let's make a nice invertible matrix out of our basis:

$$V \coloneqq \left(\begin{array}{ccc} \vec{v}_1 & \cdots & \vec{v}_n \end{array} \right).$$

We see that

$$AV = \left(\begin{array}{ccc} \sum_{i=1}^n \beta_{i1} \vec{v}_i & \cdots & \sum_{i=1}^n \beta_{in} \vec{v}_i \end{array}\right).$$

On the other hand,

$$VB = \left(\begin{array}{ccc} \sum_{i=1}^n \beta_{i1} \vec{v}_i & \cdots & \sum_{i=1}^n \beta_{in} \vec{v}_i \end{array}\right).$$

So AV = VB, whence $B = V^{-1}AV$.

This is a tricky concept. I like to think about this diagram:

Definition. We say two $n \times n$ matrices *A* and *B* are *similar* if they represent the same linear transformation with respect to two different bases.

Equivalently, A and B are similar if B represents T_A with respect to some basis.

Equivalently, A and B are similar if and only if there is some invertible matrix V such that

 $B = V^{-1}AV.$

18.06.26: More on similarity and diagonalizability

Let's do a quick example. Consider
$$A = \begin{pmatrix} 5 & -3 \\ 2 & -2 \end{pmatrix}$$
, and let's write the matrix *B* that represents T_A with respect to the basis $\left\{ \vec{v}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$.

$$B = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 5 & -3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 5 & -3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}.$$

So our A is actually similar to a diagonal matrix.

And what does that mean? The matrix *B* that represents *A* with respect to $\{\vec{v}_1, \vec{v}_2\}$ is diag(4, -1), so:

$$A\vec{v}_1 = 4\vec{v}_1$$
 and $A\vec{v}_2 = -\vec{v}_2$.

So the eigenvalues for the diagonal matrix *B* are also eigenvalues for the matrix *A*.

In other words, \vec{v}_1 and \vec{v}_2 form a *basis of eigenvectors* for A. So A is *diagonalizable*.

🔚 18.06.26: More on similarity and diagonalizability

In fact, similar matrices always have the same eigenvalues, because they have the same characteristic polynomials:

$$p_{V^{-1}AV}(t) = \det(tI - V^{-1}AV) = \det(tV^{-1}V - V^{-1}AV)$$

$$= \det(V^{-1}(tI - A)V)$$

$$= (\det V)^{-1} \det(tI - A) \det V$$

$$= \det(tI - A) = p_A(t).$$

So now we understand our terminology: an $n \times n$ matrix A is diagonalizable if and only if it is similar to a diagonal matrix diag $(\lambda_1, ..., \lambda_n)$, where $\lambda_1, ..., \lambda_n$ are the eigenvalues of A with multiplicity.

🔚 18.06.26: More on similarity and diagonalizability

In other words, the following are logically equivalent for an $n \times n$ matrix *A*:

- (1) A is diagonalizable.
- (2) There exists a basis for \mathbf{R}^n consisting of eigenvectors of *A*.
- (3) There is a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that the matrix that represents T_A with respect to $\{\vec{v}_1, \dots, \vec{v}_n\}$ is diagonal.
- (4) *A* is similar to a diagonal matrix.
- (5) *A* is similar to the diagonal matrix $diag(\lambda_1, ..., \lambda_n)$, where the λ_i 's are the eigenvalues of *A*, taken with multiplicity.
- (6) There is an invertible $n \times n$ matrix V such that $\operatorname{diag}(\lambda_1, \dots, \lambda_n) = V^{-1}AV$.

There's one more condition I'd like to add to this list. To describe it, we need some notation, which may work in unfamiliar way: suppose V, W, X are three vector subspaces of \mathbb{R}^n , and suppose $V \subseteq X$ and $W \subseteq X$. Then we write

 $X=V\oplus W$

if every vector $\vec{x} \in X$ can be written *uniquely* as a sum $\vec{v} + \vec{w}$ with $\vec{v} \in V$ and $\vec{w} \in W$.

Equivalently, $X = V \oplus W$ if $V \cap W = \{0\}$ and if every vector $\vec{x} \in X$ can be written as a sum $\vec{v} + \vec{w}$.

In other words, if $V \cap W = \{0\}$, then

 $V \oplus W = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} = \vec{v} + \vec{w}, \text{ where } \vec{v} \in V \text{ and } \vec{w} \in W \}.$

The important fact here is that

```
\dim(V \oplus W) = \dim(V) + \dim(W).
```

That's because I can take a basis $\{\vec{v}_1, \dots, \vec{v}_k\}$ of V and a basis $\{\vec{w}_1, \dots, \vec{w}_\ell\}$ of W, and I can put them together into a basis

 $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{w}_1,\ldots,\vec{w}_\ell\}.$

So, in fact, if *V*, *W*, *X* are three vector subspaces of \mathbb{R}^n with $V \subseteq X$ and $W \subseteq X$, then $X = V \oplus W$ if and only if: (1) $V \cap W = \{0\}$ and (2) dim V+dim $W = \dim X$.

Note that if λ and μ are two different eigenvalues of an $n \times n$ matrix A, then $L_{\lambda} \cap L_{\mu} = \{0\}$; indeed, if $\vec{v} \in L_{\lambda} \cap L_{\mu}$, then it is an eigenvector for both λ and μ . So

 $\lambda \vec{v} = A \vec{v} = \mu \vec{v}.$

Thus $(\lambda - \mu)\vec{v} = \vec{0}$, and since $\lambda - \mu \neq 0$, we may divide by it to see that $\vec{v} = \vec{0}$.

Now we can add the last of our equivalent conditions for *A* to be diagonalizable:

(7) If $\lambda_1, \ldots, \lambda_k$ are the eigenvalues of *A*, then

$$\mathbf{R}^n = L_{\lambda_1} \oplus \cdots \oplus L_{\lambda_k}.$$

(The cool kids call this the spectral decomposition.)

Proposition. An $n \times n$ matrix with n distinct real eigenvalues is diagonalizable.

Proof. Let $\lambda_1, ..., \lambda_n$ be the distinct eigenvalues. Let's look at the corresponding eigenspaces

$$L_{\lambda_i} = \ker(\lambda_i I - A),$$

each of which has $\dim(L_{\lambda_i}) \ge 1$.

We have already seen that if $i \neq j$, then $L_{\lambda_i} \cap L_{\lambda_j} = \{0\}$.

🔏 18.06.26: More on similarity and diagonalizability

So we have \mathbb{R}^n , which is *n*-dimensional, and we have *n* different subspaces L_{λ_i} , each of which has dimension ≥ 1 , and no two of which intersect nontrivially. So

$$\dim(L_{\lambda_1}\oplus\cdots\oplus L_{\lambda_n})=\dim(L_{\lambda_1})+\cdots+\dim(L_{\lambda_n})\leq n.$$

But the only way for that to happen is if each $\dim(L_{\lambda_i}) = 1$, in which case their sum is exactly *n*. Hence

$$\mathbf{R}^n = L_{\lambda_1} \oplus \cdots \oplus L_{\lambda_n},$$

and so A is diagonalizable.

So let's think again about our two obstructions to diagonalizability of A:

- (1) Non-real eigenvalues.
- (2) Repeated eigenvalues with an undersized eigenspace.

Spectral theorems are how we deal with point (2). We just proved one: $an n \times n$ matrix with n distinct real eigenvalues is diagonalizable over **R**. Next time, we'll prove another: *a symmetric matrix is diagonalizable over* **R**. Eventually, we'll pass to the complex numbers, and do linear algebra there.