18.06.26: More on similarity and diagonalizability

Lecturer: Barwick

Shadows are harshest
when there is only one lamp.

- James Richardson
18.06.26: More on similarity and diagonalizability

Let's get back to similarity.

Suppose I have a basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of \mathbf{R}^{n}, and suppose A is an $n \times n$ matrix, giving us a linear map $T_{A}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$.

Maybe T_{A} is actually more interesting to us than A, and maybe $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a better basis for us than the standard basis. So we want to express the action of T_{A} entirely in terms of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.
18.06.26: More on similarity and diagonalizability

When we look at our chosen basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$, we can write each vector $T_{A}\left(\vec{v}_{j}\right)$ in a unique fashion as a linear combination of the basis vectors:

$$
T_{A}\left(\vec{v}_{j}\right)=\sum_{i=1}^{n} \beta_{i j} \vec{v}_{i} .
$$

We could have put all those coefficients together into a new matrix

$$
B=\left(\beta_{i j}\right)
$$

We say that B represents T_{A} with respect to the basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.
If we'd done that with the standard basis, we'd have the matrix A staring back at us. But with a different basis, B isn't A. So how do they relate??
18.06.26: More on similarity and diagonalizability

So, let's make a nice invertible matrix out of our basis:

$$
V:=\left(\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{n}
\end{array}\right) .
$$

We see that

$$
A V=\left(\begin{array}{lll}
\sum_{i=1}^{n} \beta_{i 1} \vec{v}_{i} & \cdots & \sum_{i=1}^{n} \beta_{i n} \vec{v}_{i}
\end{array}\right) .
$$

On the other hand,

$$
V B=\left(\begin{array}{ccc}
\sum_{i=1}^{n} \beta_{i 1} \vec{v}_{i} & \cdots & \sum_{i=1}^{n} \beta_{i n} \vec{v}_{i}
\end{array}\right) .
$$

So $A V=V B$, whence $B=V^{-1} A V$.
18.06.26: More on similarity and diagonalizability

This is a tricky concept. I like to think about this diagram:

18.06.26: More on similarity and diagonalizability

Definition. We say two $n \times n$ matrices A and B are similar if they represent the same linear transformation with respect to two different bases.

Equivalently, A and B are similar if B represents T_{A} with respect to some basis.

Equivalently, A and B are similar if and only if there is some invertible matrix V such that

$$
B=V^{-1} A V
$$

18.06.26: More on similarity and diagonalizability

Let's do a quick example. Consider $A=\left(\begin{array}{cc}5 & -3 \\ 2 & -2\end{array}\right)$, and let's write the matrix B that represents T_{A} with respect to the basis $\left\{\vec{v}_{1}=\binom{3}{1}, \vec{v}_{2}=\binom{1}{2}\right\}$.

18.06.26: More on similarity and diagonalizability

$$
\begin{aligned}
B & =\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)^{-1}\left(\begin{array}{ll}
5 & -3 \\
2 & -2
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

So our A is actually similar to a diagonal matrix.
18.06.26: More on similarity and diagonalizability

And what does that mean? The matrix B that represents A with respect to $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is $\operatorname{diag}(4,-1)$, so:

$$
A \vec{v}_{1}=4 \vec{v}_{1} \quad \text { and } \quad A \vec{v}_{2}=-\vec{v}_{2}
$$

So the eigenvalues for the diagonal matrix B are also eigenvalues for the matrix A.
18.06.26: More on similarity and diagonalizability

In other words, \vec{v}_{1} and \vec{v}_{2} form a basis of eigenvectors for A. So A is diagonalizable.

18.06.26: More on similarity and diagonalizability

In fact, similar matrices always have the same eigenvalues, because they have the same characteristic polynomials:

$$
\begin{aligned}
p_{V^{-1} A V}(t)=\operatorname{det}\left(t I-V^{-1} A V\right) & =\operatorname{det}\left(t V^{-1} V-V^{-1} A V\right) \\
& =\operatorname{det}\left(V^{-1}(t I-A) V\right) \\
& =(\operatorname{det} V)^{-1} \operatorname{det}(t I-A) \operatorname{det} V \\
& =\operatorname{det}(t I-A)=p_{A}(t)
\end{aligned}
$$

18.06.26: More on similarity and diagonalizability

So now we understand our terminology: an $n \times n$ matrix A is diagonalizable if and only if it is similar to a diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A with multiplicity.

In other words, the following are logically equivalent for an $n \times n$ matrix A :
(1) A is diagonalizable.
(2) There exists a basis for \mathbf{R}^{n} consisting of eigenvectors of A.
(3) There is a basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for \mathbf{R}^{n} such that the matrix that represents T_{A} with respect to $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is diagonal.
(4) A is similar to a diagonal matrix.
(5) A is similar to the diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where the λ_{i} 's are the eigenvalues of A, taken with multiplicity.
(6) There is an invertible $n \times n$ matrix V such that $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=V^{-1} A V$.
18.06.26: More on similarity and diagonalizability

There's one more condition I'd like to add to this list. To describe it, we need some notation, which may work in unfamiliar way: suppose V, W, X are three vector subspaces of \mathbf{R}^{n}, and suppose $V \subseteq X$ and $W \subseteq X$. Then we write

$$
X=V \oplus W
$$

if every vector $\vec{x} \in X$ can be written uniquely as a sum $\vec{v}+\vec{w}$ with $\vec{v} \in V$ and $\vec{w} \in W$.

18.06.26: More on similarity and diagonalizability

Equivalently, $X=V \oplus W$ if $V \cap W=\{0\}$ and if every vector $\vec{x} \in X$ can be written as a sum $\vec{v}+\vec{w}$.

In other words, if $V \cap W=\{0\}$, then

$$
V \oplus W=\left\{\vec{x} \in \mathbf{R}^{n} \mid \vec{x}=\vec{v}+\vec{w} \text {, where } \vec{v} \in V \text { and } \vec{w} \in W\right\} .
$$

18.06.26: More on similarity and diagonalizability

The important fact here is that

$$
\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)
$$

That's because I can take a basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ of V and a basis $\left\{\vec{w}_{1}, \ldots, \vec{w}_{\ell}\right\}$ of W, and I can put them together into a basis

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{w}_{1}, \ldots, \vec{w}_{\ell}\right\}
$$

So, in fact, if V, W, X are three vector subspaces of \mathbf{R}^{n} with $V \subseteq X$ and $W \subseteq X$, then $X=V \oplus W$ if and only if: (1) $V \cap W=\{0\}$ and (2) $\operatorname{dim} V+\operatorname{dim} W=\operatorname{dim} X$.
18.06.26: More on similarity and diagonalizability

Note that if λ and μ are two different eigenvalues of an $n \times n$ matrix A, then $L_{\lambda} \cap L_{\mu}=\{0\}$; indeed, if $\vec{v} \in L_{\lambda} \cap L_{\mu}$, then it is an eigenvector for both λ and μ. So

$$
\lambda \vec{v}=A \vec{v}=\mu \vec{v} .
$$

Thus $(\lambda-\mu) \vec{v}=\overrightarrow{0}$, and since $\lambda-\mu \neq 0$, we may divide by it to see that $\vec{v}=\overrightarrow{0}$.
18.06.26: More on similarity and diagonalizability

Now we can add the last of our equivalent conditions for A to be diagonalizable:
(7) If $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of A, then

$$
\mathbf{R}^{n}=L_{\lambda_{1}} \oplus \cdots \oplus L_{\lambda_{k}} .
$$

(The cool kids call this the spectral decomposition.)
18.06.26: More on similarity and diagonalizability

Proposition. An $n \times n$ matrix with n distinct real eigenvalues is diagonalizable.

Proof. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the distinct eigenvalues. Let's look at the corresponding eigenspaces

$$
L_{\lambda_{i}}=\operatorname{ker}\left(\lambda_{i} I-A\right),
$$

each of which has $\operatorname{dim}\left(L_{\lambda_{i}}\right) \geq 1$.
We have already seen that if $i \neq j$, then $L_{\lambda_{i}} \cap L_{\lambda_{j}}=\{0\}$.

So we have \mathbf{R}^{n}, which is n-dimensional, and we have n different subspaces $L_{\lambda_{i}}$, each of which has dimension ≥ 1, and no two of which intersect nontrivially. So

$$
\operatorname{dim}\left(L_{\lambda_{1}} \oplus \cdots \oplus L_{\lambda_{n}}\right)=\operatorname{dim}\left(L_{\lambda_{1}}\right)+\cdots+\operatorname{dim}\left(L_{\lambda_{n}}\right) \leq n
$$

But the only way for that to happen is if each $\operatorname{dim}\left(L_{\lambda_{i}}\right)=1$, in which case their sum is exactly n. Hence

$$
\mathbf{R}^{n}=L_{\lambda_{1}} \oplus \cdots \oplus L_{\lambda_{n}},
$$

and so A is diagonalizable.

18.06.26: More on similarity and diagonalizability

So let's think again about our two obstructions to diagonalizability of A :
(1) Non-real eigenvalues.
(2) Repeated eigenvalues with an undersized eigenspace.

Spectral theorems are how we deal with point (2). We just proved one: $a n n \times n$ matrix with n distinct real eigenvalues is diagonalizable over \mathbf{R}. Next time, we'll prove another: a symmetric matrix is diagonalizable over R. Eventually, we'll pass to the complex numbers, and do linear algebra there.

