18.06.29: Complex matrices

Lecturer: Barwick

If it can be used again,
it is not wisdom but theory.

- James Richardson

18.06.29: Complex matrices

Proposition. Any complex vector subspace $W \subset \mathbf{C}^{n}$ of complex dimension k has an underlying real vector space of dimension $2 k$.

To see why, take a C-basis $\left\{w_{1}, \ldots, w_{k}\right\}$ of W. Now $\left\{w_{1}, i w_{1}, \ldots, w_{k}, i w_{k}\right\}$ is an R-basis of W.

18.06.29: Complex matrices

In the other direction, a real vector subspace $V \subseteq \mathbf{R}^{n}$ generates a complex vector subspace $V_{\mathbf{C}} \subseteq \mathbf{C}^{n}$, called the complexification; this is the set of all C-linear combinations of elements of V :

$$
V_{\mathbf{C}}:=\left\{w \in \mathbf{C}^{n} \mid w=\sum_{i=1}^{k} \alpha_{i} v_{i}, \text { for some } \alpha_{1}, \ldots, \alpha_{k} \in \mathbf{C}, v_{1}, \ldots, v_{k} \in V\right\} .
$$

Note that not all complex vector subspaces of \mathbf{C}^{n} are themselves complexifications; the complex vector subspace $W \subset \mathbf{C}^{2}$ spanned by $\binom{i}{1}$ provides a counterexample. (A complex vector space is a complexification if and only if it has a C-basis consisting of real vectors.)

18.06.29: Complex matrices

Now, most importantly, we may speak of complex matrices (i.e., matrices with complex entries).

All the algebra we've done with matrices over \mathbf{R} works perfectly for matrices over C, without change.

18.06.29: Complex matrices

However, the freedom to contemplate complex matrices offers us new horizons when it comes to questions about eigenspaces and diagonalization. Let's contemplate the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The characteristic polynomial $p_{A}(t)=t^{2}+1$ doesn't have any real roots, so there's no hope of diagonalizing A over \mathbf{R}.

Over C, however, we find eigenvalues $i,-i$. Let's try to diagonalize A.

18.06.29: Complex matrices

Let's begin with $L_{i}=\operatorname{ker}(i I-A)=\operatorname{ker}\left(\begin{array}{cc}i & 1 \\ -1 & i\end{array}\right)$. It's dimension 1, and it's spanned by the vector $\binom{1}{-i}$.

And $L_{-i}=\operatorname{ker}\left(\begin{array}{cc}-i & 1 \\ -1 & -i\end{array}\right)$ is dimension 1 and spanned by $\binom{1}{i}$.

18.06.29: Complex matrices

Note that neither L_{i} nor L_{-i} is a complexification. However, we do have a basis $\left\{\binom{1}{-i},\binom{1}{i}\right\}$ of \mathbf{C}^{2} consisting of eigenvectors of A, and writing T_{A} in terms of this basis gives us the matrix

$$
\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

So A is not diagonalizable over \mathbf{R}, but it is diagonalizable over \mathbf{C}.

18.06.29: Complex matrices

More generally, if we're looking at a real matrix of the form

$$
M=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

then $M=M_{z}$ for $z=a+b i$, and on the problem set, you'll show that

$$
p_{M}(t)=t^{2}-(z+\bar{z}) t+z \bar{z} .
$$

The roots of this polynomial are z and \bar{z}.

18.06.29: Complex matrices

So, very pleasantly, M is diagonalizable over \mathbf{C}, and it's similar to the matrix

$$
M=\left(\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right) .
$$

18.06.29: Complex matrices

This game of going back and forth between z and M_{z} is helpful in other ways. For example, let's take a 2×3 complex matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 i & 2+3 i \\
1-4 i & 5 i & 1-i
\end{array}\right) .
$$

We can replace each complex entry z with the 2×2 matrix M_{z} that corresponds to it, giving us a 4×6 real matrix $M_{A} \ldots$

$$
M_{A}=\left(\begin{array}{cc|cc|cc}
1 & 0 & 0 & -2 & 2 & -3 \\
0 & 1 & 2 & 0 & 3 & 2 \\
\hline 1 & 4 & 0 & -5 & 1 & 1 \\
-4 & 1 & 5 & 0 & -1 & 1
\end{array}\right)
$$

How is that helpful? Well, if we think of $T_{A}: \mathbf{C}^{3} \longrightarrow \mathbf{C}^{2}$ given by multiplication by A, we should be able to regard that as a linear map $\mathbf{R}^{6} \longrightarrow \mathbf{R}^{4}$ given by a 4×6 matrix. M_{A} is precisely that matrix!

18.06.29: Complex matrices

In particular, think about the transpose of M_{A}. What complex matrix does it correpond to?

18.06.29: Complex matrices

Our last midterm is Friday. (sniff!)

- I know you're sad, but try to work through the hurt.
- Five questions, as usual.
- It covers everything up to this page of the lectures.
- I'm aiming for a mean of around 90 again. I missed last time, but I suspect that had more to do with the shittiness of that particular week than with your ability to do the math.

18.06.29: Complex matrices

Back to our transpose:

$$
M_{A}^{\top}=\left(\begin{array}{cc|cc}
1 & 0 & 1 & -4 \\
0 & 1 & 4 & 1 \\
\hline 0 & 2 & 0 & 5 \\
-2 & 0 & -5 & 0 \\
\hline 2 & 3 & 1 & -1 \\
-3 & 2 & 1 & 1
\end{array}\right) \text {. }
$$

and let's convert it back to a complex matrix ...

18.06.29: Complex matrices

$$
A^{*}=\left(\begin{array}{cc}
1 & 1+4 i \\
-2 i & -5 i \\
2-3 i & 1+i
\end{array}\right)
$$

This is the conjugate transpose of A, so that

$$
A^{*}=\overline{\left(A^{\top}\right)}=(\bar{A})^{\top} .
$$

This clearly works in general, and we therefore find that $M_{A}^{\top}=M_{A^{*}}$.

18.06.29: Complex matrices

A real matrix A is said to be symmetric if $A=A^{\top}$.

A complex matrix B is said to be Hermitian if M_{B} is symmetric - or, equivalently, if $B=B^{*}$.
(Note that a Hermitian matrix with real entries must be symmetric.)

We need to think about this a bit more carefully. For that, let's contemplate the correct version of the dot product in \mathbf{C}^{n}, and develop some notation.

18.06.29: Complex matrices

For $v, w \in \mathbf{C}^{n}$, write

$$
\langle v \mid w\rangle:=v^{*} w .
$$

This is a complex number, called the inner product of two complex vectors; it extends the usual dot product, but notices that the linearity in the first coordinate is twisted:

$$
\langle\alpha v \mid w\rangle=\bar{\alpha}\langle v \mid w\rangle .
$$

With this, one can repeat the usual definition of orthogonality with no problem.

Lemma. An $n \times n$ complex matrix B is Hermitian if and only if, for any $v, w \in$ \mathbf{C}^{n},

$$
\langle A v \mid w\rangle=\langle v \mid A w\rangle .
$$

18.06.29: Complex matrices

Theorem (Spectral theorem; last big result of the semester). Suppose B a Hermitian matrix. Then
(1) The eigenvalues of B are real.
(2) There is an orthogonal basis of eigenvectors for B; in particular, B is diagonalizable over \mathbf{C} (and even over \mathbf{R} if B has real entries).

