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And in the telling of that story

I lose my way inside a prepositional phrase.

– Wye Oak



18.06.30: Spectral theorem

For 𝑣,𝑤 ∈ C𝑛, write
⟨𝑣|𝑤⟩ ≔ 𝑣∗𝑤.

This is a complex number, called the inner product of two complex vectors; it
extends the usual dot product, but notices that the linearity in the first coordi-
nate is twisted:

⟨𝛼𝑣|𝑤⟩ = 𝛼⟨𝑣|𝑤⟩ but ⟨𝑣|𝛼𝑤⟩ = 𝛼⟨𝑣|𝑤⟩.

The length of a vector 𝑣 ∈ C𝑛 is defined by ||𝑣||2 = ⟨𝑣|𝑣⟩; it’s precisely the same
as the length of the corresponding vector in R2𝑛. (Why??)
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Lemma. An 𝑛 × 𝑛 complex matrix 𝐵 is Hermitian if and only if, for any 𝑣,𝑤 ∈
C𝑛,

⟨𝐴𝑣|𝑤⟩ = ⟨𝑣|𝐴𝑤⟩.

Proof. If 𝐴 is Hermitian, then (𝐴𝑣)∗𝑤 = 𝑣∗𝐴∗𝑤 = 𝑣∗𝐴𝑤.

On the other hand, suppose that for any 𝑣,𝑤 ∈ C𝑛,

⟨𝐴𝑣|𝑤⟩ = ⟨𝑣|𝐴𝑤⟩.

Then when 𝑣 = ̂𝑒𝑖 and 𝑤 = ̂𝑒𝑗, this equation becomes

𝑎𝑗𝑖 = (𝐴𝑖)∗ ̂𝑒𝑗 = ̂𝑒∗𝑖 𝐴𝑗 = 𝑎𝑖𝑗.
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Theorem (Spectral theorem; last big result of the semester). Suppose 𝐵 a Her-
mitian matrix. Then

(1) The eigenvalues of 𝐵 are real.

(2) There is an orthogonal basis of eigenvectors for 𝐵; in particular, 𝐵 is diago-
nalizable over C (and even over R if 𝐵 has real entries).
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Proof. Let’s first see why the eigenvalues of 𝐵must be real. Suppose 𝑣 ∈ C𝑛 an
eigenvector of 𝐵 with eigenvalue 𝜆, so that 𝐵𝑣 = 𝜆𝑣. Then,

𝜆||𝑣||2 = 𝜆⟨𝑣|𝑣⟩ = ⟨𝑣|𝜆𝑣⟩

= ⟨𝑣|𝐵𝑣⟩

= ⟨𝐵𝑣|𝑣⟩

= ⟨𝜆𝑣|𝑣⟩

= 𝜆⟨𝑣|𝑣⟩ = 𝜆||𝑣||2.

Since 𝑣 ≠ 0, one has ||𝑣|| ≠ 0, whence 𝜆 = 𝜆.
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Now let’s see about that orthogonal basis of eigenvectors. Using the Funda-
mental Theorem of Algebra, write the characteristic polynomial

𝑝𝐵(𝑡) = (𝑡 − 𝜆1)⋯ (𝑡 − 𝜆𝑛),

where 𝜆1,… , 𝜆𝑛 ∈ C are the roots of 𝑝𝐵. We may not assume that the 𝜆𝑖’s are
distinct!!

Let’s choose an eigenvector 𝑣1 with eigenvalue 𝜆1, and consider the hyperplane

𝑊1 ≔ {𝑤 ∈ C𝑛 | ⟨𝑣1|𝑤⟩ = 0}.
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Note that for any 𝑤 ∈𝑊1, one has

⟨𝑣1|𝐵𝑤⟩ = ⟨𝐵𝑣1|𝑤⟩ = ⟨𝜆1𝑣1|𝐵𝑤⟩ = 𝜆1⟨𝑣1|𝑤⟩ = 0,

so 𝐵𝑤 ∈ 𝑊1 as well. Hence the linear map 𝑇𝐵∶C𝑛 C𝑛 restricts to a map
𝑇1∶𝑊1 𝑊1.
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Select, temporarily, a C-basis {𝑤2,… ,𝑤𝑛} of 𝑊1. Then {𝑣1,𝑤2,… ,𝑤𝑛} is a
C-basis of C𝑛, and writing 𝑇𝐵 relative to this basis gives us a matrix

𝐶1 = (
𝜆1 0
0 𝐵1
) ,

where 𝐵1 is the (𝑛 − 1) × (𝑛 − 1)matrix that represents 𝑇1 relative to the basis
{𝑤2,… ,𝑤𝑛}, and

𝑝𝐵1 = (𝑡 − 𝜆2)⋯ (𝑡 − 𝜆𝑛).
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Now we run that same argument again with the (𝑛 − 1) × (𝑛 − 1)matrix 𝐵1 in
place of the 𝑛 × 𝑛matrix 𝐵 to get:

▶ an eigenvector 𝑣2 ∈𝑊1 with eigenvalue 𝜆2,

▶ the subspace𝑊2 ⊂𝑊1 of vectors orthogonal to 𝑣2,

▶ and an (𝑛 − 2) × (𝑛 − 2)matrix 𝐵2 that represents 𝑇𝐵 restricted to𝑊2.

Now we find that 𝐵 is similar to

𝐶2 = (
𝜆1 0 0
0 𝜆2 0
0 0 𝐵2

).
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We repeat this argument repeatedly on each new 𝐵𝑖, each time getting:

▶ an eigenvector 𝑣𝑖+1 ∈𝑊𝑖 with eigenvalue 𝜆𝑖+1,

▶ the subspace𝑊𝑖+1 ⊂𝑊𝑖 of vectors orthogonal to 𝑣𝑖+1,

▶ and an (𝑛 − 𝑖 − 1) × (𝑛 − 𝑖 − 1)matrix 𝐵𝑖+1 that represents 𝑇𝐵 restricted
to𝑊𝑖+1.
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At each stage, we find that 𝐵 is similar to

𝐶𝑖+1 =(

(

𝜆1 0 ⋯ 0 0
0 𝜆2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝜆𝑖 0
0 0 ⋯ 0 𝐵𝑖+1

)

)

.



18.06.30: Spectral theorem

This process eventually stops, when 𝑖 = 𝑛. Then we’re left with:

▶ eigenvectors 𝑣1,… , 𝑣𝑛 with eigenvalues 𝜆1,… , 𝜆𝑛,

▶ a string of subspaces

C𝑛 =𝑊0 ⊃𝑊1 ⊃𝑊2 ⊃ ⋯ ⊃𝑊𝑛 = {0},

with 𝑣𝑖+1 ∈𝑊𝑖, and

𝑊𝑖+1 = {𝑤 ∈𝑊𝑖 | ⟨𝑣𝑖+1|𝑤⟩},

▶ and a diagonal matrix 𝐶𝑛 = diag(𝜆1,… , 𝜆𝑛) to which 𝐵 is similar.


