18.06.30: Spectral theorem

Lecturer: Barwick

And in the telling of that story
lose my way inside a prepositional phrase.

- Wye Oak

For $v, w \in \mathbf{C}^{n}$, write

$$
\langle v \mid w\rangle:=v^{*} w .
$$

This is a complex number, called the inner product of two complex vectors; it extends the usual dot product, but notices that the linearity in the first coordinate is twisted:

$$
\langle\alpha v \mid w\rangle=\bar{\alpha}\langle v \mid w\rangle \text { but }\langle v \mid \alpha w\rangle=\alpha\langle v \mid w\rangle .
$$

The length of a vector $v \in \mathbf{C}^{n}$ is defined by $\|v\|^{2}=\langle v \mid v\rangle$; it's precisely the same as the length of the corresponding vector in $\mathbf{R}^{2 n}$. (Why??)

18.06.30: Spectral theorem

Lemma. An $n \times n$ complex matrix B is Hermitian if and only if, for any $v, w \in$ \mathbf{C}^{n},

$$
\langle A v \mid w\rangle=\langle v \mid A w\rangle .
$$

Proof. If A is Hermitian, then $(A v)^{*} w=v^{*} A^{*} w=v^{*} A w$.
On the other hand, suppose that for any $v, w \in \mathbf{C}^{n}$,

$$
\langle A v \mid w\rangle=\langle v \mid A w\rangle .
$$

Then when $v=\hat{e}_{i}$ and $w=\hat{e}_{j}$, this equation becomes

$$
\bar{a}_{j i}=\left(A^{i}\right)^{*} \hat{e}_{j}=\hat{e}_{i}^{*} A^{j}=a_{i j} .
$$

\square

18.06.30: Spectral theorem

Theorem (Spectral theorem; last big result of the semester). Suppose B a Hermitian matrix. Then
(1) The eigenvalues of B are real.
(2) There is an orthogonal basis of eigenvectors for B; in particular, B is diagonalizable over \mathbf{C} (and even over \mathbf{R} if B has real entries).

Proof. Let's first see why the eigenvalues of B must be real. Suppose $v \in \mathbf{C}^{n}$ an eigenvector of B with eigenvalue λ, so that $B v=\lambda v$. Then,

$$
\begin{aligned}
\lambda\|v\|^{2}=\lambda\langle v \mid v\rangle & =\langle v \mid \lambda v\rangle \\
& =\langle v \mid B v\rangle \\
& =\langle B v \mid v\rangle \\
& =\langle\lambda v \mid v\rangle \\
& =\bar{\lambda}\langle v \mid v\rangle=\bar{\lambda}\|v\|^{2} .
\end{aligned}
$$

Since $v \neq 0$, one has $\|v\| \neq 0$, whence $\lambda=\bar{\lambda}$.

Now let's see about that orthogonal basis of eigenvectors. Using the Fundamental Theorem of Algebra, write the characteristic polynomial

$$
p_{B}(t)=\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right),
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in \mathbf{C}$ are the roots of p_{B}. We may not assume that the λ_{i} 's are distinct!!

Let's choose an eigenvector v_{1} with eigenvalue λ_{1}, and consider the hyperplane

$$
W_{1}:=\left\{w \in \mathbf{C}^{n} \mid\left\langle v_{1} \mid w\right\rangle=0\right\} .
$$

18.06.30: Spectral theorem

Note that for any $w \in W_{1}$, one has

$$
\left\langle v_{1} \mid B w\right\rangle=\left\langle B v_{1} \mid w\right\rangle=\left\langle\lambda_{1} v_{1} \mid B w\right\rangle=\lambda_{1}\left\langle v_{1} \mid w\right\rangle=0,
$$

so $B w \in W_{1}$ as well. Hence the linear map $T_{B}: \mathbf{C}^{n} \longrightarrow \mathbf{C}^{n}$ restricts to a map $T_{1}: W_{1} \longrightarrow W_{1}$.

Select, temporarily, a C-basis $\left\{w_{2}, \ldots, w_{n}\right\}$ of W_{1}. Then $\left\{v_{1}, w_{2}, \ldots, w_{n}\right\}$ is a C-basis of \mathbf{C}^{n}, and writing T_{B} relative to this basis gives us a matrix

$$
C_{1}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & B_{1}
\end{array}\right)
$$

where B_{1} is the $(n-1) \times(n-1)$ matrix that represents T_{1} relative to the basis $\left\{w_{2}, \ldots, w_{n}\right\}$, and

$$
p_{B_{1}}=\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right) .
$$

Now we run that same argument again with the $(n-1) \times(n-1)$ matrix B_{1} in place of the $n \times n$ matrix B to get:

- an eigenvector $v_{2} \in W_{1}$ with eigenvalue λ_{2},
- the subspace $W_{2} \subset W_{1}$ of vectors orthogonal to v_{2},
- and an $(n-2) \times(n-2)$ matrix B_{2} that represents T_{B} restricted to W_{2}.

Now we find that B is similar to

$$
C_{2}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & B_{2}
\end{array}\right)
$$

18.06.30: Spectral theorem

We repeat this argument repeatedly on each new B_{i}, each time getting:

- an eigenvector $v_{i+1} \in W_{i}$ with eigenvalue λ_{i+1},
- the subspace $W_{i+1} \subset W_{i}$ of vectors orthogonal to v_{i+1},
- and an $(n-i-1) \times(n-i-1)$ matrix B_{i+1} that represents T_{B} restricted to W_{i+1}.

18.06.30: Spectral theorem

At each stage, we find that B is similar to

$$
C_{i+1}=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{i} & 0 \\
0 & 0 & \cdots & 0 & B_{i+1}
\end{array}\right)
$$

18.06.30: Spectral theorem

This process eventually stops, when $i=n$. Then we're left with:

- eigenvectors v_{1}, \ldots, v_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$,
- a string of subspaces

$$
\mathbf{C}^{n}=W_{0} \supset W_{1} \supset W_{2} \supset \cdots \supset W_{n}=\{0\}
$$

with $v_{i+1} \in W_{i}$, and

$$
W_{i+1}=\left\{w \in W_{i} \mid\left\langle v_{i+1} \mid w\right\rangle\right\}
$$

- and a diagonal matrix $C_{n}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ to which B is similar.

