Problem 1

Let A be an $n \times n$ matrix. True or False:

- A is invertible if and only if $\operatorname{Ker}(A)=0$
- A is invertible if and only if the rows of A span \mathbb{R}^{n}
- If A is similar to $2 A$, then $A=0$
- Similar matrices have the same set of eigenvalues
- If all the eigenvalues of A are zero, then $A=0$
- The rank of A is equal to the number of nonzero eigenvalues of A counted with multiplicity

Problem 2

Consider the system of equations
$\left\{\begin{array}{l}x+3 y+5 z=a \\ x+2 y+2 z=b \\ x+y-z=c\end{array}\right.$

- Find the general solution of the homogeneous equation.
- Let $a=0, b=0$, and $c=-2$. Find the most general solution of these inhomogeneous equations.
- Find values of a, b, and c such that these equations have no solution.

Problem 3

For what values of k is the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & k \\
0 & 0 & k
\end{array}\right)
$$

diagonalizable over \mathbb{R}, over \mathbb{C} ?

Problem 4

Compute the determinant of the following matrix

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 4 & 5 \\
3 & 3 & 3 & 4 & 5 \\
4 & 4 & 4 & 4 & 5 \\
5 & 5 & 5 & 5 & 5
\end{array}\right)
$$

Problem 5

Let

$$
A=\left(\begin{array}{cccc}
3 & 2-i & -3 i & 4 \\
2+i & 0 & 1-i & 3 \\
3 i & 1+i & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Find the eigenvalues and eigenspaces of A
- Find the determinant of $A^{3}+2 A$

Problem 6

Find the projection of $v^{T}=(1,2,3)$ onto the coimage of

$$
A=\left(\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & -3 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

