Solutions to the practice final exam 18.06

Problem 1

- True
- True
- False: consider the similar matrices $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$.
- True
- False: the matrix $\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)$ has both of its eigenvalues equal to zero.
- False: the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is again a counterexample.

Problem 2

- We rewrite this system in the matrix form

$$
\left(\begin{array}{ccc}
1 & 3 & 5 \\
1 & 2 & 2 \\
1 & 1 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Let us denote the matrix A. The row reduced form of A is $\left(\begin{array}{ccc}1 & 3 & 5 \\ 0 & -1 & -3 \\ 0 & 0 & 0\end{array}\right)$. There are two pivots, thus, the kernel of A is one-dimensional and z is the free variable. We find that the basis of the kernal is $\left(\begin{array}{c}4 \\ -3 \\ 1\end{array}\right)$. Therefore, the general solution of the homogeneous system is $s \cdot\left(\begin{array}{c}4 \\ -3 \\ 1\end{array}\right)$, for $s \in \mathbb{R}$.

- Let $a=0, b=-1$, and $c=-2$. The special solution is $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$. Thus, the general solution is $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)+s \cdot\left(\begin{array}{c}4 \\ -3 \\ 1\end{array}\right)$, for $s \in \mathbb{R}$.
- Consider $a=0, b=0$, and $c=-2$. Since the last equation is (2 *second equation - first equation) we conclude that if $a=0$ and $b=0$, then for a solution to exist c must equal to 0 .

Problem 3

This matrix is in block-diagonal form. The characteristic polynomial is $(t-1)(t-2)(t-k)$. Now, if $k \neq 1,2$ this matrix is DZ over \mathbb{C}, since all its eigenvalue are distinct (if $k \in \mathbb{R}$ it is DZ over \mathbb{R} as well).

Let $k=1$. The corresponding eigenspace is the kernel of

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

which is 2 -dimensional. Thus, the matrix is DZ over \mathbb{R} and \mathbb{C}.
Finally, let $k=2$. The corresponding eigenspace is the kernel of

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

which is 1 -dimensional. Thus, the matrix is not DZ over \mathbb{C} and \mathbb{R}.

Problem 4

We will do row reduction. Substract the 4 th row from the 5 th one, the 3 d row from the 4 th one and so on. This operations do not change the determniant and we end up with matrix

$$
\tilde{A}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right), \quad \operatorname{det}(\tilde{A})=\operatorname{det}(A)
$$

No we will perform 4 swaps to get

$$
\tilde{\tilde{A}}=\left(\begin{array}{ccccc}
5 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1
\end{array}\right), \quad \operatorname{det}(\tilde{\tilde{A}})=(-1)^{4} \operatorname{det}(A)
$$

Determinant of this matrix is 5 . Therefore, $\operatorname{det}(A)=5$ as well.

Problem 5

Note that this matrix is in block-upper-triangular form where the first matrix is Hermitian and the second block is 1-by-1. Thus, all the eigenvalues of this matrix are real. Its characteristic polynomial is $p(t)=$ $\left(t^{3}-3 t^{2}-16 t-12\right)(t-1)$. By trial and error we find that $p(t)=(t-6)(t+2)(t+1)(t-1)$. Therefore,
all the eigenvalues are distinct, so the matrix is DZ over \mathbb{C} and all the eigenspaces are 1-dimensional. The eigenvectors are $(1,-21 i, 6-9 i, 13,0)^{T},(1+3 i,-2-i, 5,0)^{T},(-1,1+2 i, 1,0)^{T},(-13+24 i, 11-8 i, 7-36 i, 30)$.

The determinant of $A^{3}+2 A$ is the product of its eigenvalues which are $6^{3}+2 \cdot 6,(-2)^{3}+2 \cdot(-2),(-1)^{3}+$ $2 \cdot(-1), 1^{3}+2 \cdot 1$.

Problem 6

Coimage is the row space. In the row reduced form there are three pivots, so the row space is 3 -dimensional. Therefore, the row space is the whole \mathbb{R}^{3}. Then the projection of v is the vector itself.

