PROBLEM SET II

DUE 29 FEBRUARY 2016

 Invert the following square matrices using whatever method you prefer. (They are all invertible!)

(ine) are an interaction (i)
(a)
$$\begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}$$

(b) $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
(c) $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 6 \\ 4 & 6 & 8 \end{pmatrix}$
(d) $\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 2 & 4 \\ 2 & 4 & 6 \\ 4 & 6 & 8 \end{pmatrix}$
(d) $\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 \\ 1 &$

That last one's a bit of a pain if you don't find a shortcut (there are several), but the result is pretty darn interesting!!

DUE 29 FEBRUARY 2016

(2) Your roommate wakes you up at 3AM in a fit of rage, cursing that he/she has "no idea whether this [expletive deleted] matrix is invertible." You look at the matrix he/she has drawn, and in your drowsy, bleary-eyed state, all you can tell is that it's a 2×2 matrix with 3 positive entries and one negative entry. Can you answer your roommate so you can get back to sleep?

2

(3) If $1 \le i < j \le n$ and if *r* is a real number, let $L_{ij}(r)$ be the $n \times n$ matrix whose entry in row *u* and column *v* is given by

$$l_{uv} \coloneqq \begin{cases} r & \text{if } u = i \text{ and } v = j; \\ 1 & \text{if } u = v; \\ 0 & \text{otherwise.} \end{cases}$$

So it's just like the identity matrix, except the (i, j)-th entry is changed to r. Matrices that look like this are sometimes called *elementary* matrices.

- (a) If *A* is an $n \times n$ matrix, what are $L_{ij}(r)A$ and $AL_{ij}(r)$? Express your answer in terms of row and column vectors.
- (b) Must the inverse of $L_{ij}(r)$ be another elementary matrix? If so, which one?

(4) Is this 18×18 matrix invertible?

3 4 8 9 12 13 14 15 3 4 14 15 $0 \ 0 \ 0 \ 0$ 14 15

Explain! (You don't need to use the determinant to answer this question, but can you guess the determinant of this matrix anyhow?)

PROBLEM SET II

(5) Here's a system of 512 linear equations in 512 variables x_1, x_2, \dots, x_{512} :

$$513 = x_2 + x_3 + \dots + x_{511} + x_{512};$$

$$514 = x_1 + x_3 + \dots + x_{511} + x_{512};$$

$$\vdots$$

$$1023 = x_1 + x_2 + \dots + x_{510} + x_{512};$$

$$1024 = x_1 + x_2 + \dots + x_{510} + x_{511}.$$

Does it have a unique solution?