PROBLEM SET II

DUE 29 FEBRUARY 2016
(1) Invert the following square matrices using whatever method you prefer. (They are all invertible!)
(a) $\left(\begin{array}{ll}5 & 2 \\ 2 & 5\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 6 \\ 4 & 6 & 8\end{array}\right)$
(d) $\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$
(f) $\left(\begin{array}{ccccc}1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\ 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\ 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 \\ 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 \\ 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 & 1 / 9\end{array}\right)$

That last one's a bit of a pain if you don't find a shortcut (there are several), but the result is pretty darn interesting!!
(2) Your roommate wakes you up at 3AM in a fit of rage, cursing that he/she has "no idea whether this [expletive deleted] matrix is invertible." You look at the matrix he/she has drawn, and in your drowsy, bleary-eyed state, all you can tell is that it's a 2×2 matrix with 3 positive entries and one negative entry. Can you answer your roommate so you can get back to sleep?
(3) If $1 \leq i<j \leq n$ and if r is a real number, let $L_{i j}(r)$ be the $n \times n$ matrix whose entry in row u and column v is given by

$$
l_{u v}:= \begin{cases}r & \text { if } u=i \text { and } v=j \\ 1 & \text { if } u=v ; \\ 0 & \text { otherwise }\end{cases}
$$

So it's just like the identity matrix, except the (i, j)-th entry is changed to r. Matrices that look like this are sometimes called elementary matrices.
(a) If A is an $n \times n$ matrix, what are $L_{i j}(r) A$ and $A L_{i j}(r)$? Express your answer in terms of row and column vectors.
(b) Must the inverse of $L_{i j}(r)$ be another elementary matrix? If so, which one?
(4) Is this 18×18 matrix invertible?

$$
\left(\begin{array}{cccccccccccccccccc}
1 & 2 & 0 & 0 & 0 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 2 & 0 & 0 & 0 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
1 & 2 & 3 & 4 & 0 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
1 & 2 & 0 & 4 & 0 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
1 & 2 & 3 & 4 & 0 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 8 & 0 & 0 & 0 & 0 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 8 & 9 & 10 & 0 & 0 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 8 & 0 & 10 & 0 & 0 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 & 8 & 9 & 10 & 0 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 15 & 16 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 0 & 16 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 15 & 16 & 17 & 18 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 15 & 16 & 0 & 18
\end{array}\right)
$$

Explain! (You don't need to use the determinant to answer this question, but can you guess the determinant of this matrix anyhow?)
(5) Here's a system of 512 linear equations in 512 variables $x_{1}, x_{2}, \ldots, x_{512}$:

$$
\begin{aligned}
513 & =x_{2}+x_{3}+\cdots+x_{511}+x_{512} \\
514 & =x_{1}+x_{3}+\cdots+x_{511}+x_{512} \\
& \vdots \\
1023 & =x_{1}+x_{2}+\cdots+x_{510}+x_{512} \\
1024 & =x_{1}+x_{2}+\cdots+x_{510}+x_{511} .
\end{aligned}
$$

Does it have a unique solution?

