
18.06 Problem Set 2. Solutions

February 29, 2016

Problem 1

Invert the following square matrices using whatever method you prefer.

Matrix

1.

(
5 2

2 5

)
,

2.

 0 1 1

1 0 1

1 1 0

,

3.

 1 2 4

2 4 6

4 6 8

,

4.



0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0


,

5.


1 0 0 0 0

−1 1 0 0 0

1 −1 1 0 0

0 0 0 1 −1

0 0 0 0 1

 ,

Inverse Matrix

1. 1
21

(
5 −2

−2 5

)
,

2. 1
2

 −1 1 1

1 −1 1

1 1 −1

,

3.

 1 −2 1

−2 2 − 1
2

1 − 1
2 0

,

4.



0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0


,

5.


1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

 ,

6.


1 1

2
1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

 . 6.


25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100

 .
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Remarks:

1d) It is a permutation matrix Pπ, where π is a permutation π of a set of 6 elements

π : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6},

given in two-line form by (
1 2 3 4 5 6

3 5 1 4 6 2

)
.

Multiplying a permutation matrix Pπ times a column vector x =


x1

x2

. . .

x6

 will permute the rows of x :

Pπx =


xπ(1) = x3

xπ(2) = x5

. . .

xπ(6) = x2

 .

Thus, the inverse of Pπ is Pπ−1 = PTπ , where PTπ is the transpose of Pπ.

1e) Note that

Ax =


1 0 0 0 0

−1 1 0 0 0

1 −1 1 0 0

0 0 0 1 −1

0 0 0 0 1




x1

x2

x3

x4

x5

 =


x1

−x1 + x2

x1 − x2 + x3

x4 − x5
x5

 .

Thus, the inverse matrix A−1 should act in the following way:

A−1


x1

−x1 + x2

x1 − x2 + x3

x4 − x5
x5

 =


x1

x2

x3

x4

x5

 .

Therefore,

A−1


x1

x2

x3

x4

x5

 =


x1

x2 + x1

x3 + x2

x4 + x5

x5

 .

1f) The matrix H with the entries Hi,j = 1
i+j−1 is called a Hilbert matrix. There is a general formula for

computing the inverse of H:

2



(H−1)ij = (−1)i+j(i+ j − 1) ·
(
n+ i− 1

n− j

)
·
(
n+ j − 1

n− i

)
·
(
i+ j − 2

i− 1

)2

,

where n is the order of the matrix. In particular, it means that the entries of the inverse matrix are all

integer.

Problem 2

The matrix is invertible if and only if its determinant is non-zero. The determinant of a 2× 2 matrix

det

(
a b

c d

)
= ad− bc.

If the unique negative entry is a or d then det < 0, otherwise det > 0. In any case, the determinant is

not equal to zero, so the matrix is invertible.

Problem 3

Let us look at 3× 3 case first. Consider as an example

L1,3(r)A =

 1 0 r

0 1 0

0 0 1

 ·
 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 + r · a31 a12 + r · a32 a13 + r · a33
a21 a22 a23

a31 a32 a33



AL1,3(r) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 1 0 r

0 1 0

0 0 1

 =

 a11 a12 a13 + r · a11
a21 a22 a23 + r · a12
a31 a32 a33 + r · a13

 .

The above computation can be easily extended to the n× n case.

We see the pattern:

• Multiplication by Li,j(r) on the left results in adding r times j-th row vector to the i-th row vector

while all the other row vectors stay the same;

• Multiplication by Li,j(r) on the right results in adding r times i-th column column to the j-th column

vector while all the other row vectors stay the same.

Using the Gauss-Jordan method we see that

Lij(r)
−1 = Lij(−r).

Problem 4

Let us divide this large 18× 18 matrix, which we denote by A, into 9 blocks of 6× 6 matrices:
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A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Note that A21, A31 and A32 are zero matrices. So our matrix is block upper triangular.

The matrices A11, A22, A33 all are almost lower triangular, more precisely, they become lower triangular

after two steps of the Gauss elimination process and the entries on the diagonal are non-zero. Then we see

that detA11 = 1 · 2 · · · · · 6, detA22 = 7 · 8 · · · · · 12, detA11 = 13 · 14 · · · · · 18.

Recall that detA = detA11 · detA22 · detA33 = 1 · 2 · · · · · 18. In particular, this matrix is invertible.

Problem 5

The first solution is the same one as for the third problem in the midterm. Let us show that the span of the

columns of the matrix corresponding to this system of equations is R512. Denote the columns by v1, . . . , v512.

observe that 1
511

512∑
i=1

vi = (1, 1, . . . , 1), so for all i we have ei = ( 1
511

512∑
i=1

vi)− vi. Thus, all ei lie in the span of

{vi}. Therefore, there exists a solution of this system of equations. Also, by two-out-of-three criterion the

vectors {vi} are linearly independent, so the solution is unique.

There is also a way to solve this system of equations directly by an elimination procedure.
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