PROBLEM SET III

DUE 7 MARCH 2016

(1) Solve the equations $A \vec{x}=\overrightarrow{0}$ (i.e., find a basis for $\operatorname{ker}(A)$) in the following situations.
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(b) $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
(c) $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right)$

Challenging (extra credit): can you compute the kernel of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1 & n+2 & \cdots & 2 n \\
\vdots & \vdots & \ddots & \vdots \\
(n-1) n+1 & (n-1) n+2 & \cdots & n^{2}
\end{array}\right)
$$

in general?
(2) Solve the equations $A \vec{x}=\overrightarrow{0}$ (i.e., find a basis for $\operatorname{ker}(A)$) in the following situations.
(a) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$
(b) $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right)$
(c) $A=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7\end{array}\right)$

Challenging (extra credit): can you compute the kernel of

$$
A=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
2 & 3 & \cdots & n+1 \\
\vdots & \vdots & \ddots & \vdots \\
n & n+1 & \cdots & 2 n-1
\end{array}\right)
$$

in general?
(3) The $m \times n$ checkerboard matrix is the matrix A whose entries are

$$
a_{i j}=\frac{1}{2}\left(1+(-1)^{i+j}\right) .
$$

Find a basis for the kernel of A. (Hint: this should only require a little computation.)
(4) Suppose you have an $(m+p, n+q)$ matrix of the form

$$
X=\left(\begin{array}{c|c}
A & B \\
\hline 0 & C
\end{array}\right)
$$

where A is an $m \times n$ matrix, B is an $m \times q$ matrix, C is a $p \times q$ matrix, and 0 is the $p \times n$ matrix that is all zeroes. Suppose you know the nullity of A and C. What, if anything, can you conclude about the nullity of X ?
(5) Define a matrix

$$
Q:=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

Compute $Q^{-1}, Q^{2}, Q^{-2}, Q^{3}, Q^{-3}$. Write a formula for the entries of any power Q^{k} (positive or negative) involving Fibonacci numbers defined by $f_{0}:=0, f_{1}:=1$, and for $n \geq 1$,

$$
f_{n+1}:=f_{n}+f_{n-1}
$$

Prove using Q that $f_{n}^{2}+(-1)^{n}=f_{n-1} f_{n+1}$. What other things can you learn by playing with Q ? (This one doesn't use much from this week - all the Q^{k} are of course invertible - I just think it's fun.)
(6) Let F be the $m \times n$ matrix whose entries are

$$
a_{i j}=f_{i+j},
$$

the $(i+j)$-th Fibonacci number from the previous problem. Find a basis for the kernel of A.

