
18.06 PSet 3 Solution

Problem 1

(a) A is invertible, so kerA = {0}.

(b), (c) and so on:

Let us solve the n×n case for n ≥ 3. Let cj be the j-th column of our matrix A. A direct computation
shows that

c2 − c1 = c3 − c2 = · · · = cn − cn−1 =

1
...
1

 ,

hence c1− 2c2 + c3 = c2− 2c3 + c4 = · · · = cn−2− 2cn−1 + cn = 0. From these linear relations between
columns of A, we can extract n− 2 solutions to the equation A~x = ~0. They are

~x1 =



1
−2
1
0
0
...
0


, ~x2 =



0
1
−2
1
0
...
0


, . . . , ~xn−2 =



0
0
...
0
1
−2
1


.

It is not hard to check that ~x1, . . . , ~xn−2 are linearly independent vectors, so

(1) dim(kerA) ≥ n− 2.

On the other hand, notice that the first 2 columns of A are linearly independent, therefore dim(im A) ≥
2. By the Rank-Nullity Theorem (see Lecture 13 slides), we know that

(2) dim(kerA) = n− dim(im A) ≤ n− 2.

Compare (1) and (2) we conclude that dim(kerA) = n− 2 and therefore {~x1, . . . , ~xn−2} forms a basis
of kerA.

Remark 0.1. What described above is exactly the column operation method covered in Lecture 13.

Problem 2

Both the method and answer are identical to Problem 1.
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Problem 3

If we write down the matrix A, it is easy to find that

c1 = c3 = c5 = · · · =



1
0
1
0
1
...


and

c2 = c4 = c6 = · · · =



0
1
0
1
0
...


.

Use the argument in Problem 1, one conclude that

1
0
−1
0
0
...
0


,



0
1
0
−1
0
...
0


, . . . ,



0
0
...
0
1
0
−1


is a basis of kerA. There are (n− 2) of them.

Problem 4

Suppose

(
v1
v2

)
is a vector in kerX. It is equivalent to say that

{
Av1 + Bv2 = 0

Cv2 = 0
.

Hence for any v1 ∈ kerA, the vector

(
v1
0

)
lives in kerX, i.e.,

(
kerA

0

)
⊂ kerX,

in particular
dim kerX ≥ dim kerA.

On the other hand, for

(
v1
v2

)
∈ kerX, we know that v2 ∈ kerC. Moreover, fix v2 ∈ kerC, the solutions

to
Av1 = −Bv2
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is either the empty set or an affine space of dimension dim kerA (meaning that the difference of any two
solutions v1 and v′1 is a vector in kerA), so we conclude that

dim kerX ≤ dim kerA + dim kerC.

Combining two parts, we see that

(3) dim kerA ≤ dim kerX ≤ dim kerA + dim kerC.

Remark 0.2. Maybe a better way to reach the final result is to observe that

q + column rank of A ≥ column rank of X ≥ column rank of C + column rank of A,

and deduce the final result from the Rank-Nullity Theorem.

Problem 5

Direct computation shows that

Q2 =

(
2 1
1 1

)
,

hence Q2 −Q − I = 0, where I is the 2 by 2 identity matrix. Use the relation Q2 = Q + I repetitively, we
see that

Q−1 = Q−1 · I = Q−1(Q2 −Q) = Q− I =

(
0 1
1 −1

)
,

Q−2 = (Q−1)2 = (Q− I)2 = Q2 − 2Q + I = 2I −Q =

(
1 −1
−1 2

)
,

Q−3 = Q−2Q−1 = (2I −Q)(Q− I) = −Q2 + 3Q− 2I = 2Q− 3I =

(
−1 2
2 −3

)
,

Q3 = Q2Q = (Q + I)Q = Q2 + Q = 2Q + I =

(
3 2
2 1

)
.

In general, we have

Qn =

(
fn+1 fn
fn fn−1

)
and we can deduce this by induction on n, using the fact that

Qn = Qn−2Q2 = Qn−2(Q + I) = Qn−1 + Qn−2.

Taking the determinant of Qn, we see that

fn+1fn−1 − f2
n = detQn = (detQ)n = (−1)n,

therefore
f2
n + (−1)n = fn−1fn+1.

There are many things we can do by playing with Q. For instance, consider

Qn+m = QnQm = QmQn,

then we can write down (
fn+m+1 fn+m

fn+m fn+m−1

)
=

(
fn+1 fn
fn fn−1

)(
fm+1 fm
fm fm−1

)
.
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Compare the (1, 1)-entry, we see that

fn+m+1 = fn+1fm+1 + fnfm.

In particular, if we choose n = m, we see that

f2n+1 = f2
n+1 + f2

n.

Therefore f2n+1 can be expressed as a sum of two squares, hence (if you know some number theory) f2n+1

is not a multiple of 3, 7, 11, 19, 23,. . . .

Problem 6

Let cj be the j-th column of our matrix F . By the definition of Fibonacci numbers, we see that

c1 + c2 − c3 = c2 + c3 − c4 = · · · = cn−2 + cn−1 − cn = 0.

Use the method in Problem 1, we find that a basis of kerF is given by

1
1
−1
0
0
...
0


,



0
1
1
−1
0
...
0


, . . . ,



0
0
0
...
1
1
−1


.

There are (n− 2) of them.
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