18.06 PSet 3 Solution

Problem 1

(a) A is invertible, so $\operatorname{ker} A=\{0\}$.
(b), (c) and so on:

Let us solve the $n \times n$ case for $n \geq 3$. Let c_{j} be the j-th column of our matrix A. A direct computation shows that

$$
c_{2}-c_{1}=c_{3}-c_{2}=\cdots=c_{n}-c_{n-1}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

hence $c_{1}-2 c_{2}+c_{3}=c_{2}-2 c_{3}+c_{4}=\cdots=c_{n-2}-2 c_{n-1}+c_{n}=0$. From these linear relations between columns of A, we can extract $n-2$ solutions to the equation $A \vec{x}=\overrightarrow{0}$. They are

$$
\vec{x}_{1}=\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{c}
0 \\
1 \\
-2 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \ldots, \quad \vec{x}_{n-2}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
-2 \\
1
\end{array}\right)
$$

It is not hard to check that $\vec{x}_{1}, \ldots, \vec{x}_{n-2}$ are linearly independent vectors, so

$$
\begin{equation*}
\operatorname{dim}(\operatorname{ker} A) \geq n-2 \tag{1}
\end{equation*}
$$

On the other hand, notice that the first 2 columns of A are linearly independent, therefore $\operatorname{dim}(\operatorname{im} A) \geq$ 2. By the Rank-Nullity Theorem (see Lecture 13 slides), we know that

$$
\begin{equation*}
\operatorname{dim}(\operatorname{ker} A)=n-\operatorname{dim}(\operatorname{im} A) \leq n-2 \tag{2}
\end{equation*}
$$

Compare (1) and (2) we conclude that $\operatorname{dim}(\operatorname{ker} A)=n-2$ and therefore $\left\{\vec{x}_{1}, \ldots, \vec{x}_{n-2}\right\}$ forms a basis of $\operatorname{ker} A$.

Remark 0.1. What described above is exactly the column operation method covered in Lecture 13.

Problem 2

Both the method and answer are identical to Problem 1.

Problem 3

If we write down the matrix A, it is easy to find that

$$
c_{1}=c_{3}=c_{5}=\cdots=\left(\begin{array}{c}
1 \\
0 \\
1 \\
0 \\
1 \\
\vdots
\end{array}\right)
$$

and

$$
c_{2}=c_{4}=c_{6}=\cdots=\left(\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right)
$$

Use the argument in Problem 1, one conclude that

$$
\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \cdots, \quad\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

is a basis of $\operatorname{ker} A$. There are $(n-2)$ of them.

Problem 4

Suppose $\binom{v_{1}}{v_{2}}$ is a vector in $\operatorname{ker} X$. It is equivalent to say that

$$
\left\{\begin{array}{l}
A v_{1}+B v_{2}=0 \\
C v_{2}=0
\end{array}\right.
$$

Hence for any $v_{1} \in \operatorname{ker} A$, the vector $\binom{v_{1}}{0}$ lives in $\operatorname{ker} X$, i.e.,

$$
\binom{\operatorname{ker} A}{0} \subset \operatorname{ker} X
$$

in particular

$$
\operatorname{dim} \operatorname{ker} X \geq \operatorname{dim} \operatorname{ker} A
$$

On the other hand, for $\binom{v_{1}}{v_{2}} \in \operatorname{ker} X$, we know that $v_{2} \in \operatorname{ker} C$. Moreover, fix $v_{2} \in \operatorname{ker} C$, the solutions to

$$
A v_{1}=-B v_{2}
$$

is either the empty set or an affine space of dimension $\operatorname{dim} \operatorname{ker} A$ (meaning that the difference of any two solutions v_{1} and v_{1}^{\prime} is a vector in $\operatorname{ker} A$), so we conclude that

$$
\operatorname{dim} \operatorname{ker} X \leq \operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{ker} C
$$

Combining two parts, we see that

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} A \leq \operatorname{dim} \operatorname{ker} X \leq \operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{ker} C \tag{3}
\end{equation*}
$$

Remark 0.2. Maybe a better way to reach the final result is to observe that

$$
q+\text { column rank of } A \geq \text { column rank of } X \geq \text { column rank of } C+\text { column rank of } A
$$ and deduce the final result from the Rank-Nullity Theorem.

Problem 5

Direct computation shows that

$$
Q^{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

hence $Q^{2}-Q-I=0$, where I is the 2 by 2 identity matrix. Use the relation $Q^{2}=Q+I$ repetitively, we see that

$$
\begin{aligned}
Q^{-1} & =Q^{-1} \cdot I=Q^{-1}\left(Q^{2}-Q\right)=Q-I=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \\
Q^{-2} & =\left(Q^{-1}\right)^{2}=(Q-I)^{2}=Q^{2}-2 Q+I=2 I-Q=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \\
Q^{-3} & =Q^{-2} Q^{-1}=(2 I-Q)(Q-I)=-Q^{2}+3 Q-2 I=2 Q-3 I=\left(\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right) \\
Q^{3} & =Q^{2} Q=(Q+I) Q=Q^{2}+Q=2 Q+I=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)
\end{aligned}
$$

In general, we have

$$
Q^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
$$

and we can deduce this by induction on n, using the fact that

$$
Q^{n}=Q^{n-2} Q^{2}=Q^{n-2}(Q+I)=Q^{n-1}+Q^{n-2}
$$

Taking the determinant of Q^{n}, we see that

$$
f_{n+1} f_{n-1}-f_{n}^{2}=\operatorname{det} Q^{n}=(\operatorname{det} Q)^{n}=(-1)^{n}
$$

therefore

$$
f_{n}^{2}+(-1)^{n}=f_{n-1} f_{n+1}
$$

There are many things we can do by playing with Q. For instance, consider

$$
Q^{n+m}=Q^{n} Q^{m}=Q^{m} Q^{n}
$$

then we can write down

$$
\left(\begin{array}{cc}
f_{n+m+1} & f_{n+m} \\
f_{n+m} & f_{n+m-1}
\end{array}\right)=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)\left(\begin{array}{cc}
f_{m+1} & f_{m} \\
f_{m} & f_{m-1}
\end{array}\right)
$$

Compare the $(1,1)$-entry, we see that

$$
f_{n+m+1}=f_{n+1} f_{m+1}+f_{n} f_{m}
$$

In particular, if we choose $n=m$, we see that

$$
f_{2 n+1}=f_{n+1}^{2}+f_{n}^{2}
$$

Therefore $f_{2 n+1}$ can be expressed as a sum of two squares, hence (if you know some number theory) $f_{2 n+1}$ is not a multiple of $3,7,11,19,23, \ldots$.

Problem 6

Let c_{j} be the j-th column of our matrix F. By the definition of Fibonacci numbers, we see that

$$
c_{1}+c_{2}-c_{3}=c_{2}+c_{3}-c_{4}=\cdots=c_{n-2}+c_{n-1}-c_{n}=0
$$

Use the method in Problem 1, we find that a basis of $\operatorname{ker} F$ is given by

$$
\left(\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \ldots, \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1 \\
1 \\
-1
\end{array}\right)
$$

There are $(n-2)$ of them.

