
PROBLEM SET IV

DUE THURSDAY, 7 APRIL 2016

(1) Suppose { ⃗𝑣1,… , ⃗𝑣𝑘} an orthonormal set of vectors in R𝑛. What happens
when you apply the Gram–Schmidt process to this set? Why?
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(2) The Padovan numbers 𝑝(𝑛) are defined in a manner similar to the Fi-
bonacci numbers: we define

𝑝(0) = 𝑝(1) = 𝑝(2) = 1,
and for 𝑛 ≥ 3, we set

𝑝(𝑛) ≔ 𝑝(𝑛 − 2) + 𝑝(𝑛 − 3).
Now consider the 𝑛 × 𝑛matrix𝛱(𝑛) whose 𝑖, 𝑗-th entry is given by

𝑝(𝑖 + 𝑗).
For 1 ≤ 𝑛 ≤ 5, find a basis for each of the four fundamental spaces:
ker(𝛱(𝑛)), im(𝛱(𝑛)), coker(𝛱(𝑛)), and im(𝛱(𝑛)). Can you say what will
happen in general?
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(3) Here’s a vector of R5:

�⃗� ≔ (

1
−1
1
−1
1

)

and here’s a 3 × 5 matrix

𝐴 ≔ (
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6

) .

Compute the projection 𝜋ker(𝐴)(�⃗�) of the vector �⃗� onto the subspace
ker(𝐴) ⊂ R5.
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(4) Here’s a basis of R𝑛:

{{{{{{{
{{{{{{{
{

(

(

0
1
1
⋮
1
1

)

)

, (

(

1
0
1
⋮
1
1

)

)

, (

(

1
1
0
⋮
1
1

)

)

, ⋯ , (

(

1
1
1
⋮
0
1

)

)

, (

(

1
1
1
⋮
1
0

)

)

}}}}}}}
}}}}}}}
}

.

This is the basis { ⃗𝑣1,… , ⃗𝑣𝑛} where

⃗𝑣𝑗 = ∑
𝑖≠𝑗

̂𝑒𝑖.

What is the Gram–Schmidt orthonormalization of this basis?



PROBLEM SET IV 5

(5) Challenging. The Gram–Schmidt process isn’t just for the dot product. It
works equally well for more exonic inner products. Here’s a fun example
for you to work through.
(a) The starting place is to think of a vector

⃗𝑣 = (

𝛼0
𝛼1
⋮
𝛼𝑛+1

) ∈ R𝑛+1

as a way of encoding the coefficients of a polynomial in a variable 𝑥:

𝑝 ⃗𝑣(𝑥) ≔ ∑
0≤𝑖≤𝑛
𝛼𝑖𝑥𝑖 = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛.

Prove that for any two vectors ⃗𝑣, �⃗� ∈ R𝑛+1 and for any two scalars
𝑟, 𝑠 ∈ R, we have

𝑝𝑟 ⃗𝑣+𝑠�⃗�(𝑥) = 𝑟𝑝 ⃗𝑣(𝑥) + 𝑠𝑝�⃗�(𝑥).
(The fancy-sounding thing to say is that 𝑝 defines a linear map (in
fact an isomorphism) from R𝑛+1 to the vector space of polynomials
of degree ≤ 𝑛.)
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(b) Now define, for any two vectors ⃗𝑣, �⃗� ∈ R𝑛+1, a number

⟨ ⃗𝑣, �⃗�⟩ = ∫
+1

−1
𝑝 ⃗𝑣(𝑥)𝑝�⃗�(𝑥) 𝑑𝑥.

This defines something called a scalar product on R𝑛+1: in effect, you
input two vectors, and you get out a real number. We want to think
of this as formally analogous to the dot product. To see that analogy,
check the following identities:
(i) For any two vectors ⃗𝑣, �⃗� ∈ R𝑛,

⟨ ⃗𝑣, �⃗�⟩ = ⟨�⃗�, ⃗𝑣⟩.
(ii) For any three vectors ⃗𝑣, �⃗�, �⃗� ∈ R𝑛, and for any two numbers
𝑟, 𝑠 ∈ R,

⟨𝑟 ⃗𝑣 + 𝑠�⃗�, �⃗�⟩ = 𝑟⟨ ⃗𝑣, �⃗�⟩ + 𝑠⟨�⃗�, �⃗�⟩.
(iii) Suppose ⃗𝑣 ∈ R𝑛 is a vector. If, for every vector �⃗� ∈ R𝑛, one has

⟨ ⃗𝑣, �⃗�⟩ = 0, then ⃗𝑣 = 0⃗.
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(c) According to this scalar product, how “long” is the vector
⃗𝑣 = (1,… , 1)?



8 DUE THURSDAY, 7 APRIL 2016

(d) Now we see that the standard basis { ̂𝑒0,… , ̂𝑒𝑛} is no longer “orthogo-
nal” with respect to this new scalar product. (Note that we’re indexing
things in a slightly different way, because we have 𝑛+1 basis vectors.)
Indeed, compute, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the number

⟨ ̂𝑒𝑖, ̂𝑒𝑗⟩.

For which 𝑖 and 𝑗 do you get zero?
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(e) Now, finally, let’s apply the Gram–Schmidt orthogonalization process
–with respect to this crazy new scalar product! – to the standard basis
{ ̂𝑒0,… , ̂𝑒𝑛}. So we define, iteratively,

�⃗�0 = ̂𝑒0;

�⃗�1 = ̂𝑒1 − ⟨�⃗�0, ̂𝑒1⟩
⟨�⃗�0, �⃗�0⟩

�⃗�0;

�⃗�2 = ̂𝑒2 − ⟨�⃗�0, ̂𝑒2⟩
⟨�⃗�0, �⃗�0⟩

�⃗�0 − ⟨�⃗�1, ̂𝑒2⟩
⟨�⃗�1, �⃗�1⟩

�⃗�1;

⋮

�⃗�𝑛 = ̂𝑒𝑛 −
𝑛−1

∑
𝑖=0

⟨�⃗�𝑖, ̂𝑒𝑛⟩
⟨�⃗�𝑖, �⃗�𝑖⟩
�⃗�𝑖.

(We won’t bother with the normalization step, because that’ll just
introduce a bunch of square roots no one wants.) Compute 𝑝�⃗�𝑖 for
0 ≤ 𝑖 ≤ 4.

(f) (This bit’s very difficult, and totally optional.) Relate 𝑝�⃗�𝑛 to the 𝑛-th
derivative of (𝑥2 − 1)𝑛.


