PROBLEM SET IV

DUE THURSDAY, 7 APRIL 2016
(1) Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ an orthonormal set of vectors in \mathbf{R}^{n}. What happens when you apply the Gram-Schmidt process to this set? Why?
(2) The Padovan numbers $p(n)$ are defined in a manner similar to the Fibonacci numbers: we define

$$
p(0)=p(1)=p(2)=1,
$$

and for $n \geq 3$, we set

$$
p(n):=p(n-2)+p(n-3) .
$$

Now consider the $n \times n$ matrix $\Pi(n)$ whose i, j-th entry is given by

$$
p(i+j) .
$$

For $1 \leq n \leq 5$, find a basis for each of the four fundamental spaces: $\operatorname{ker}(\Pi(n)), \operatorname{im}(\Pi(n))$, coker $(\Pi(n))$, and $\operatorname{im}(\Pi(n))$. Can you say what will happen in general?
(3) Here's a vector of \mathbf{R}^{5} :

$$
\vec{b}:=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right)
$$

and here's a 3×5 matrix

$$
A:=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6
\end{array}\right)
$$

Compute the projection $\pi_{\operatorname{ker}(A)}(\vec{b})$ of the vector \vec{b} onto the subspace $\operatorname{ker}(A) \subset \mathbf{R}^{5}$.
(4) Here's a basis of \mathbf{R}^{n} :

This is the basis $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ where

$$
\vec{v}_{j}=\sum_{i \neq j} \hat{e}_{i} .
$$

What is the Gram-Schmidt orthonormalization of this basis?
(5) Challenging. The Gram-Schmidt process isn't just for the dot product. It works equally well for more exonic inner products. Here's a fun example for you to work through.
(a) The starting place is to think of a vector

$$
\vec{v}=\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n+1}
\end{array}\right) \in \mathbf{R}^{n+1}
$$

as a way of encoding the coefficients of a polynomial in a variable x :

$$
p_{\vec{v}}(x):=\sum_{0 \leq i \leq n} \alpha_{i} x^{i}=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n} x^{n} .
$$

Prove that for any two vectors $\vec{v}, \vec{w} \in \mathbf{R}^{n+1}$ and for any two scalars $r, s \in \mathbf{R}$, we have

$$
p_{r \vec{v}+s \vec{w}}(x)=r p_{\vec{v}}(x)+s p_{\vec{w}}(x) .
$$

(The fancy-sounding thing to say is that p defines a linear map (in fact an isomorphism) from \mathbf{R}^{n+1} to the vector space of polynomials of degree $\leq n$.)
(b) Now define, for any two vectors $\vec{v}, \vec{w} \in \mathbf{R}^{n+1}$, a number

$$
\langle\vec{v}, \vec{w}\rangle=\int_{-1}^{+1} p_{\vec{v}}(x) p_{\vec{w}}(x) d x
$$

This defines something called a scalar product on \mathbf{R}^{n+1} : in effect, you input two vectors, and you get out a real number. We want to think of this as formally analogous to the dot product. To see that analogy, check the following identities:
(i) For any two vectors $\vec{v}, \vec{w} \in \mathbf{R}^{n}$,

$$
\langle\vec{v}, \vec{w}\rangle=\langle\vec{w}, \vec{v}\rangle .
$$

(ii) For any three vectors $\vec{v}, \vec{w}, \vec{x} \in \mathbf{R}^{n}$, and for any two numbers $r, s \in \mathbf{R}$,

$$
\langle r \vec{v}+s \vec{w}, \vec{x}\rangle=r\langle\vec{v}, \vec{x}\rangle+s\langle\vec{w}, \vec{x}\rangle .
$$

(iii) Suppose $\vec{v} \in \mathbf{R}^{n}$ is a vector. If, for every vector $\vec{w} \in \mathbf{R}^{n}$, one has $\langle\vec{v}, \vec{w}\rangle=0$, then $\vec{v}=\overrightarrow{0}$.
(c) According to this scalar product, how "long" is the vector

$$
\vec{v}=(1, \ldots, 1) ?
$$

(d) Now we see that the standard basis $\left\{\hat{e}_{0}, \ldots, \hat{e}_{n}\right\}$ is no longer "orthogonal" with respect to this new scalar product. (Note that we're indexing things in a slightly different way, because we have $n+1$ basis vectors.) Indeed, compute, for any $1 \leq i, j \leq n$, the number

$$
\left\langle\hat{e}_{i}, \hat{e}_{j}\right\rangle
$$

For which i and j do you get zero?
(e) Now, finally, let's apply the Gram-Schmidt orthogonalization process - with respect to this crazy new scalar product! - to the standard basis $\left\{\hat{e}_{0}, \ldots, \hat{e}_{n}\right\}$. So we define, iteratively,

$$
\begin{aligned}
\vec{u}_{0} & =\hat{e}_{0} ; \\
\vec{u}_{1} & =\hat{e}_{1}-\frac{\left\langle\vec{u}_{0}, \hat{e}_{1}\right\rangle}{\left\langle\vec{u}_{0}, \vec{u}_{0}\right\rangle} \vec{u}_{0} ; \\
\vec{u}_{2} & =\hat{e}_{2}-\frac{\left\langle\vec{u}_{0}, \hat{e}_{2}\right\rangle}{\left\langle\vec{u}_{0}, \vec{u}_{0}\right\rangle} \vec{u}_{0}-\frac{\left\langle\vec{u}_{1}, \hat{e}_{2}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle} \vec{u}_{1} ; \\
& \vdots \\
\vec{u}_{n} & =\hat{e}_{n}-\sum_{i=0}^{n-1} \frac{\left\langle\vec{u}_{i}, \hat{e}_{n}\right\rangle}{\left\langle\vec{u}_{i}, \vec{u}_{i}\right\rangle} \vec{u}_{i} .
\end{aligned}
$$

(We won't bother with the normalization step, because that'll just introduce a bunch of square roots no one wants.) Compute $p_{\vec{u}_{i}}$ for $0 \leq i \leq 4$.
(f) (This bit's very difficult, and totally optional.) Relate $p_{\vec{u}_{n}}$ to the n-th derivative of $\left(x^{2}-1\right)^{n}$.

