Correction Pset 4, 18.06

April 7, 2016

Problem 1

The Gram-Schmidt procedure does not modify orthormal sets of vectors $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$ in \mathbb{R}^{n}. Let us prove this statement by induction on k. If $k=1$ it is obvious. Consider a orthonormal set $\left\{\overrightarrow{v_{1}}, \ldots, v_{k+1}\right\}$ of $k+1$ vectors in \mathbb{R}^{n}. We first apply GS to the set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right\}$. By the induction hypothesis, this set stays unchanged. Then we compute the orthogonal projection of $\overrightarrow{v_{k+1}}$ onto the space spanned by $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$. Since v_{k+1} is orthogonal to $\overrightarrow{v_{i}}$ for $i=1 \ldots k$, this projection is $\overrightarrow{0}$. Therefore the GS procedure does not change the set $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{+1}}\right\}$.

Problem 2

The matrices $\Pi(n)$ are symmetric therefore we only need to compute $\operatorname{Ker} \Pi(n)$ and $\operatorname{Im} \Pi(n)$. If we call C_{i}^{n} the i-th column of the matrix $\Pi(n)$ we have for all $n \geq 4$ and $i \geq 4$

$$
\begin{equation*}
C_{i}^{n}=C_{i-2}^{n}+C_{i-3}^{n} \tag{1}
\end{equation*}
$$

Therefore, when $n \geq 4$, the column space of $\Pi(n)$ is the span of the first three columns. We can check that these three first columns are independent. Hence, $C_{1}^{n}, C_{2}^{n}, C_{3}^{n}$ is a basis of $\operatorname{Im} \Pi(n)$ when $n \geq 4$. By the rank-nullity theorem, we have when $n \geq 4$:

$$
\operatorname{dim} \operatorname{Ker} \Pi(n)=n-3
$$

To find a basis of $\operatorname{Ker} \Pi(n)$, it suffices to exhibit $n-3$ independent vectors in $\operatorname{Ker} \Pi(n)$. We deduce them from equation (1). They are given by, for $i \geq 4$

$$
v_{i}=e_{i}-e_{i-2}-e_{i-3}
$$

Finally, it is straighforward to check that $\Pi(1), \Pi(2)$ and $\Pi(3)$ are invertible matrices. Hence they have trivial kernels and their image is $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3}.

Problem 3

After 3 elementary row operations we can bring the matrix A to the following matrix

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & -3 & -8 \\
0 & 0 & 1 & 3 & 6
\end{array}\right]
$$

where

$$
\operatorname{Ker}(A)=\operatorname{Ker}(B)
$$

Therefore a basis of Ker A is given by $\overrightarrow{v_{1}}=(-1,3,-3,1,0)^{T}$ and $\overrightarrow{v_{2}}=(-3,8,-6,0,1)^{T}$. Let us orthogonalize $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$. We have $\pi_{\overrightarrow{v_{2}}}\left(\overrightarrow{v_{1}}\right)=\frac{45}{20} \overrightarrow{v_{1}}$, hence let $\overrightarrow{w_{2}}=\overrightarrow{v_{2}}-\pi_{\overrightarrow{v_{2}}}\left(\overrightarrow{v_{1}}\right)=\frac{1}{4}(-3,5,3,-9,4)^{T}$. Then $\left\{\overrightarrow{v_{1}}, \overrightarrow{w_{2}}\right\}$ is a orthogonal basis of Ker A. We have

$$
\pi_{\text {Ker A }}(\vec{b})=\pi_{\overrightarrow{v_{1}}}(\vec{b})+\pi_{\overrightarrow{w_{2}}}(\vec{b})=-\frac{2}{5}(-1,3,-3,1,0)^{T}+\frac{2}{35}(-3,5,3,-9,4)^{T}=\frac{8}{35}(1,-4,6,-4,1)^{T}
$$

Problem 4

Let $\left(e_{i}\right)_{i=1 \ldots n}$ be the canonical basis of \mathbb{R}^{n}. We define the vectors $v_{i} \in \mathbb{R}^{n}$ for $i=1 \ldots n$ by

$$
v_{i}=(1, \ldots, 1)^{T}-e_{i}
$$

It is easy to see that $v_{j} \cdot v_{j}=n-1$ and that $v_{i} \cdot v_{j}=n-2$ when $i \neq j$. Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be the GS orthogonalization of $\left\{v_{1}, \ldots, v_{n}\right\}$. Then $u_{1}=v_{1}$ and $u_{k}(k \geq 2)$ is of the form

$$
u_{k}=v_{k}+c_{k}^{1} v_{1}+\cdots+c_{k}^{k-1} v_{k-1}
$$

where $c_{k}^{1}, \ldots, c_{k}^{k-1}$ are real numbers. The GS process indicates that u_{k} is orthogonal to v_{1}, \ldots, v_{k-1}, i.e.,

$$
u_{k} \cdot v_{j}=\left(v_{k}+c_{k}^{1} v_{1}+\cdots+c_{k}^{k-1} v_{k-1}\right) \cdot v_{j}=0
$$

for $j=1, \ldots, k-1$. By symmetry we know that $c_{k}^{1}=\cdots=c_{k}^{k-1}$ and an easy computation shows that

$$
c_{k}^{1}=\cdots=c_{k}^{k-1}=-\frac{n-2}{n-1+(k-2)(n-2)}
$$

So

$$
\begin{aligned}
u_{k} & =v_{k}-\frac{n-2}{n-1+(k-2)(n-2)}\left(v_{1}+\ldots v_{k-1}\right) \\
& =\frac{1}{n-1+(k-2)(n-2)}(1, \ldots, 1,-k(n-2), 3-n, \ldots, 3-n)^{T}
\end{aligned}
$$

where 1 appears for $k-1$ times and $3-n$ appears for $n-k$ times. The GS orthonormalization of $\left\{v_{1}, \ldots, v_{n}\right\}$ is given by $\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{u_{n}}{\left\|u_{n}\right\|}\right\}$.

Problem 5

(a) Let $v=\left(v_{0}, \ldots, v_{n}\right)^{T}$ and $w=\left(w_{0}, \ldots, w_{n}\right)$ be two vectors in \mathbb{R}^{n+1} and r, s be two real numbers. Since $r v+s w=\left(r v_{0}+s w_{0}, \ldots, r v_{n}+s w_{n}\right)$, we have by definition

$$
\begin{aligned}
p_{r v+s w}(x) & =\sum_{i=0}^{n}\left(r v_{i}+s w_{i}\right) x^{i} \\
& =r \sum_{i=0}^{n} v_{i} x^{i}+s \sum_{i=0}^{n} w_{i} x^{i} \\
& =r p_{v}(x)+s p_{w}(x)
\end{aligned}
$$

(b) (i) Let v and w be two vectors in \mathbb{R}^{n+1}. Then,

$$
\begin{aligned}
\langle v \mid w\rangle & =\int_{-1}^{1} p_{v}(x) \cdot p_{w}(x) d x \\
& =\int_{-1}^{1} p_{w}(x) \cdot p_{v}(x) d x \\
& =\langle w \mid v\rangle
\end{aligned}
$$

(ii) Let v, w and u be three vectors in \mathbb{R}^{n+1} and r, s be two real numbers. We have :

$$
\begin{aligned}
\langle r v+s w \mid u\rangle & =\int_{-1}^{1} p_{r v+s w}(x) \cdot p_{u}(x) d x \\
& =\int_{-1}^{1}\left(r p_{v}(x)+s p_{w}(x)\right) \cdot p_{u}(x) d x \\
& =r \int_{-1}^{1} p_{v}(x) \cdot p_{u}(x) d x+s \int_{-1}^{1} p_{w}(x) \cdot p_{u}(x) d x \\
& =r\langle v \mid u\rangle+s\langle w \mid u\rangle
\end{aligned}
$$

(iii) Let v be a vector in \mathbb{R}^{n+1} such that $\langle v \mid w\rangle=0$ for all $w \in \mathbb{R}^{n+1}$. In particular,

$$
\langle v \mid v\rangle=\int_{-1}^{1} p_{v}(x)^{2} d x=0
$$

The integral of a continuous and non-negative function on an interval is trivial if and only the function itself is trivial. Therfore, $p_{v}(x)=0$ on the interval $[-1,1]$. Since a nontrivial polynomial cannot have infinitely many zeroes, we get that $p_{v}=0$, hence that $v=0$.
(c) Let $v=(1, \ldots, 1)^{T}$. By definition, we have

$$
\begin{aligned}
\langle v \mid v\rangle & =\int_{-1}^{1} p_{v}(x)^{2} d x \\
& =\int_{-1}^{1}\left(1+x+\cdots+x^{n}\right)^{2} d x \\
& =\int_{-1}^{1}\left(\sum_{i, j=0}^{n} x^{i+j}\right) d x \\
& =\sum_{i, j=0}^{n} \int_{-1}^{1} x^{i+j} d x \\
& =\sum_{i, j=0}^{n} \frac{1-(-1)^{i+j+1}}{i+j+1} \\
& =\sum_{k=0}^{2 n} p_{k} \cdot \frac{1-(-1)^{k+1}}{k+1}
\end{aligned}
$$

where p_{k} denotes the number of pairs (i, j) such that $i+j=k, 0 \leq i, j \leq n$ for $k=0, \ldots, 2 n$. The length of v is given by $\sqrt{\langle v \mid v\rangle}$.
(d) Let i and j be two integers between 0 and n.

$$
\begin{aligned}
\left\langle e_{i} \mid e_{j}\right\rangle & =\int_{-1}^{1} p_{e_{i}}(x) \cdot p_{e_{j}}(x) d x \\
& =\int_{-1}^{1} x^{i} \cdot x^{j} d x \\
& =\int_{-1}^{1} x^{i+j} d x \\
& =\frac{1-(-1)^{i+j+1}}{i+j+1}
\end{aligned}
$$

So e_{i} and e_{j} are orthogonal if and only if $i+j$ is odd.
(e) We have $u_{0}=e_{0}$. By $(d), u_{0} \cdot e_{1}=0$ hence $u_{1}=e_{1}$. To compute u_{2}, we need to compute $u_{0} \cdot e_{2}$ and $u_{1} . e_{2}$. The second quantity is 0 for the same reason. As for the first one, $u_{0} \cdot e_{2}=\frac{2}{3}$. Moreover, $u_{0} . u_{0}=2$. Hence $u_{2}=e_{2}-\frac{1}{3} e_{0}$. The only non-trivial term while computing the projection of e_{3} into the space spanned by u_{0}, u_{1}, u_{2} is $u_{1} \cdot e_{3}=\frac{2}{5}$. Since $u_{1} \cdot u_{1}=\frac{2}{3}$ we obtain $u_{3}=e_{3}-\frac{3}{5} e_{1}$. Using similar reasoning,
we find $u_{4}=e_{4}-\frac{6}{7} u_{2}-\frac{1}{5} u_{0}=e_{4}-\frac{6}{7} e_{2}+\frac{3}{35} e_{0}$. In terms of polynomials,

$$
\begin{aligned}
& p_{u_{0}}(x)=1 \\
& p_{u_{1}}(x)=x \\
& p_{u_{2}}(x)=x^{2}-\frac{1}{3} \\
& p_{u_{3}}(x)=x^{3}-\frac{3}{5} x \\
& p_{u_{4}}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}
\end{aligned}
$$

(f) Let us denote by Q_{n} the polynomial $\left(\frac{d}{d x}\right)^{n}\left(\left(x^{2}-1\right)^{n}\right)$ for $n \geq 0$. Note that the degree of Q_{n} is n for all $n \geq 0$. Let us use the notation V_{n} for the space of polynomials of degree at most n. In other words, V_{n} is the span of $1, x, \ldots, x^{n}$. We have a sequence of inclusions

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{n} \subset \ldots
$$

Let us prove that the degree of $p_{u_{n}}$ is n for all $n \geq 0$. It is true when $n=0$. Assume it is true up to the integer n. Since by GS the span of u_{0}, \ldots, u_{n+1} is the same as the span of the vectors e_{0}, \ldots, e_{n+1}, we see that the degree of $p_{u_{n+1}}$ is at most $n+1$. If it was strictly less than $n+1$ we would have $n+2$ independent vectors u_{0}, \ldots, u_{n+1} in V_{n}. This is not possible because the dimension of V_{n} is $n+1$.

The next step is to prove that the polynomial Q_{n} is orthogonal to V_{n-1} for the scalar product $\langle. \mid$.$\rangle . Let$ $P \in V_{n-1}$, i.e. a polynomial of degree at most $n-1$. In particular, $\left(\frac{d}{d x}\right)^{n}(P)=0$. We want to show that

$$
\int_{-1}^{1} P \cdot Q_{n}=0
$$

It is not too hard to check by induction that $\left(\frac{d}{d x}\right)^{j}\left(Q_{n}\right)=R_{j}(x) \cdot\left(x^{2}-1\right)^{n-j}$ for some polynomial R_{j} for $j=0, \ldots, n-1$. Consequentely, $\left(\frac{d}{d x}\right)^{j}\left(Q_{n}\right)(1)=\left(\frac{d}{d x}\right)^{j}\left(Q_{n}\right)(-1)=0$ for $j=0, \ldots, n-1$. Therefore, performing integration by part n times gives

$$
\begin{aligned}
\int_{-1}^{1} P \cdot Q_{n} & =\int_{-1}^{1} P(x) \cdot\left(\frac{d}{d x}\right)^{n}\left(\left(x^{2}-1\right)^{n}\right) d x \\
& =(-1)^{n} \int_{-1}^{1}\left(\frac{d}{d x}\right)^{n}(P) \cdot Q_{n}(x) d x \\
& =0
\end{aligned}
$$

At this point, we have enough information to claim the following fact : $p_{u_{n}}$ and Q_{n} are proportional for all n. Remember that the u_{n} comes from GS applied to the canonical basis e_{i}. Therefore it is orthogonal to the space spanned by e_{0}, \ldots, e_{n-1} which is precisely V_{n-1}. Both $p_{u_{n}}$ and Q_{n} are elements of the space V_{n} which are orthogonal to the space V_{n-1}. The dimension of the space V_{n} (resp. V_{n-1}) is n (resp. $n-1$). Therefore the dimension of $V_{n-1}{ }^{\perp}$ is 1 . The polynomials $p_{u_{n}}$ and Q_{n} belong to a space of dimension 1 , so
they are proportional. We can find the coefficient of proportionnality by looking at the highest degree term of each of them. The leading term of $p_{u_{n}}$ is x^{n}. The leading term of Q_{n} is $\frac{2 n!}{n!}$. We can then conclude that for all $n \geq 0$,

$$
p_{u_{n}(x)}=\frac{n!}{2 n!}\left(\frac{d}{d x}\right)^{n}\left(x^{2}-1\right)^{n}
$$

