PROBLEM SET V

DUE THURSDAY, 14 APRIL 2016
(1) Suppose A a nonzero $n \times n$ matrix such that for some $k \geq 1$, the matrix $I-A^{k}$ is invertible. Prove that $I-A$ is invertible.
(2) Compute

$$
\operatorname{det}\left(\begin{array}{ccccc}
0 & 0 & 0 & a & b \\
0 & 0 & 0 & c & d \\
0 & 0 & 0 & e & f \\
p & q & r & s & t \\
v & w & x & y & z
\end{array}\right)
$$

for any $a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \in \mathbf{R}$.
(3) Compute

$$
\operatorname{det}\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 3 & 4 & 0 & 0 \\
0 & 3 & 0 & 0 & 4 & 0 \\
3 & 0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

(4) Suppose $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ the $n \times n$ matrix such that

$$
a_{i, j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=j+1 \\ -1 & \text { if } i=j-1 \\ 0 & \text { otherwise }\end{cases}
$$

Let d_{n} be the determinant of A and let f_{n} be n-th the Fibonacci number. Show that $d_{n}=f_{n}$ by proving d_{n} satisfies the same recursion relation $d_{n}=d_{n-1}+d_{n-2}$ as Fibonacci numbers.
(5) (This one's a tough one!) Suppose $n \geq 2$.
(a) Fix vectors $v_{1}, v_{2}, \ldots, v_{n-1} \in \mathbf{R}^{n}$. Show that there exists a unique vector $x \in \mathbf{R}^{n}$ such that for any $w \in \mathbf{R}^{n}$, one has

$$
x \cdot w=\operatorname{det}\left(v_{1}, v_{2}, \ldots, v_{n-1}, w\right)
$$

In this situation, we call x the cross product of $v_{1}, v_{2}, \ldots, v_{n-1}$, and we write

$$
x=v_{1} \times v_{2} \times \cdots \times v_{n-1} .
$$

(Note that the cross product is a map $\left(\mathbf{R}^{n}\right)^{n-1} \longrightarrow \mathbf{R}^{n}$; it does not make sense to speak of the cross product of fewer than $n-1$ vectors!)
(b) Show that, for any vectors $v_{1}, v_{2}, \ldots, v_{n-1} \in \mathbf{R}^{n}$, one has

$$
\left|v_{1} \times v_{2} \times \cdots \times v_{n-1}\right|=\sqrt{\operatorname{det} M}
$$

where M is the $(n-1) \times(n-1)$ matrix whose (i, j)-th entry is $v_{i} \cdot v_{j}$.

