PROBLEM SET VI

DUE THURSDAY, 21 APRIL 2016
(1) What is the constant term of the characteristic polynomial of a square matrix? Why?
(2) Compute the eigenvalues of the matrix

$$
\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

(3) The following matrices have only one eigenvalue: 1 . What are the dimensions of the eigenspaces in each case?

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

(4) Is the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

diagonalizable?
(5) If n is odd, then every $n \times n$ matrix has at least one eigenvector in \mathbf{R}^{n}. Why?
(6) Suppose $n \geq 2$, and consider the $n \times n$ matrix $A=\left(\alpha_{i, j}\right)$ whose entries are given by

$$
\alpha_{i, j}= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Write a formula for the entries of the matrix A^{k} for $0 \leq k \leq n$.
(b) For $1 \leq k \leq n$, compute the eigenvalues and eigenspaces of A^{k}.
(7) Suppose $\hat{x} \in \mathbf{R}^{n}$ a unit vector. Recall from Exam III the Householder matrix $H=I-2 \widehat{x} \widehat{x}^{\top}$ and the hyperplane

$$
N:=\left\{\vec{v} \in \mathbf{R}^{n} \mid \vec{v} \cdot \hat{x}=0\right\}
$$

(which is the orthogonal complement to \hat{x}).
(a) If you weren't able to show that for any $\vec{w} \in \mathbf{R}^{n}$, one has $\pi_{N}(\vec{w})=$ $\pi_{N}(H \vec{w})$ on Exam III, please write up a proof here in your own words!
(b) Prove that for any $\vec{w} \in \mathbf{R}^{n}$, one also has

$$
\vec{w}-\pi_{N}(\vec{w})=\pi_{N}(H \vec{w})-H \vec{w} .
$$

Explain what H does geometrically; draw a picture for $n=2$ and $n=3$.
(c) Purely from geometry, compute the eigenvalues and eigenspaces of H. (You don't have to compute any determinants for this.) Is H diagonalizable?

Optional additional problems

(8) For every permutation $\sigma \in \Sigma_{3}$, compute the eigenvalues and eigenspaces of the 3×3 matrix P_{σ}.
(9) Does the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

have any real eigenvalues?
(10) What is the characteristic polynomial of the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 5 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 13
\end{array}\right) ?
$$

