PROBLEM SET VII

DUE THURSDAY, 5 MAY 2016

- (1) Using only the identities $e^{i\theta} = \cos \theta + i \sin \theta$ and $\cos^2 \theta + \sin^2 \theta = 1$ along with the basic functioning of the complex numbers, prove the following trigonometric identities:
 - (a) $\cos(\alpha \pm \beta) = (\cos \alpha)(\cos \beta) \mp (\sin \alpha)(\sin \beta);$
 - (b) $\sin(\alpha \pm \beta) = (\sin \alpha)(\cos \beta) \pm (\cos \alpha)(\sin \beta);$
 - (c) $\sin^2 \alpha = \frac{1}{2}(1 \cos(2\alpha));$
 - (d) $\cos^2 \alpha = \frac{1}{2}(1 + \cos(2\alpha)).$

(In the same way, you can also prove a formula for \cos^n and \sin^n in terms of only sines and cosines.)

(2) For any complex number z = a + bi, consider the matrix

$$M_z \coloneqq \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Prove that these matrices contain all the algebraic properties of **C** by verifying the following:

(a) $M_0 = 0$ and $M_1 = I$; (b) $M_{z+w} = M_z + M_w$ for any $z, w \in \mathbf{C}$; (c) $M_{-z} = -M_z$ for any $z \in \mathbf{C}$; (d) $M_{zw} = M_z M_w$ for any $z, w \in \mathbf{C}$; (e) $M_{z^{-1}} = M_z^{-1}$ for any $z \in \mathbf{C}$ such that $z \neq 0$; (f) $M_{\overline{z}} = M_z^{\mathsf{T}}$ for any $z \in \mathbf{C}$; (g) $|z|^2 = \det M_z$ for any $z \in \mathbf{C}$; (h) $t^2 - (z + \overline{z})t + z\overline{z} = p_{M_z}(t)$ for any $z \in \mathbf{C}$; (i) $M_{\rho \exp(i\theta)} = \rho \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for any $\rho \ge 0$ and any $\theta \in [0, 2\pi)$.

2

(3) Consider the $n \times n$ matrix

$$A = \begin{pmatrix} \hat{e}_2 & \cdots & \hat{e}_n & \hat{e}_1 \end{pmatrix}.$$

Compute the characteristic polynomial and the complex eigenvalues of *A*. Is *A* diagonalizable over **R**? over **C**?

(4) Suppose $\theta \in [0, 2\pi)$. What are the complex eigenvalues and correpsonding complex eigenspaces of the matrix

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}?$$

4

PROBLEM SET VII

(5) Suppose $\hat{x} \in \mathbb{C}^n$ a vector such that $\hat{x}^* \hat{x} = 1$. What are the eigenspaces of $I - 2\hat{x}\hat{x}^*$?

(6) Suppose *A* is an $n \times n$ matrix with characteristic polynomial

$$p_A(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1x + a_0.$$

Find an expression for $p_{A^{-1}}(t)$ by contemplating the determinant of $(tI - A^{-1})A$.

6

PROBLEM SET VII

(7) For any $n \ge 2$, give an example of an invertible $n \times n$ matrix that is not diagonalizable over **C**.