PROBLEM SET VII

DUE THURSDAY, 5 MAY 2016
(1) Using only the identities $e^{i \theta}=\cos \theta+i \sin \theta$ and $\cos ^{2} \theta+\sin ^{2} \theta=1$ along with the basic functioning of the complex numbers, prove the following trigonometric identities:
(a) $\cos (\alpha \pm \beta)=(\cos \alpha)(\cos \beta) \mp(\sin \alpha)(\sin \beta)$;
(b) $\sin (\alpha \pm \beta)=(\sin \alpha)(\cos \beta) \pm(\cos \alpha)(\sin \beta)$;
(c) $\sin ^{2} \alpha=\frac{1}{2}(1-\cos (2 \alpha))$;
(d) $\cos ^{2} \alpha=\frac{1}{2}(1+\cos (2 \alpha))$.
(In the same way, you can also prove a formula for $\cos ^{n}$ and $\sin ^{n}$ in terms of only sines and cosines.)
(2) For any complex number $z=a+b i$, consider the matrix

$$
M_{z}:=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Prove that these matrices contain all the algebraic properties of \mathbf{C} by verifying the following:
(a) $M_{0}=0$ and $M_{1}=I$;
(b) $M_{z+w}=M_{z}+M_{w}$ for any $z, w \in \mathbf{C}$;
(c) $M_{-z}=-M_{z}$ for any $z \in \mathbf{C}$;
(d) $M_{z w}=M_{z} M_{w}$ for any $z, w \in \mathbf{C}$;
(e) $M_{z^{-1}}=M_{z}^{-1}$ for any $z \in \mathbf{C}$ such that $z \neq 0$;
(f) $M_{\bar{z}}=M_{z}^{\top}$ for any $z \in \mathbf{C}$;
(g) $|z|^{2}=\operatorname{det} M_{z}$ for any $z \in \mathbf{C}$;
(h) $t^{2}-(z+\bar{z}) t+z \bar{z}=p_{M_{z}}(t)$ for any $z \in \mathbf{C}$;
(i) $M_{\rho \exp (i \theta)}=\rho\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for any $\rho \geq 0$ and any $\theta \in[0,2 \pi)$.
(3) Consider the $n \times n$ matrix

$$
A=\left(\begin{array}{llll}
\hat{e}_{2} & \cdots & \hat{e}_{n} & \hat{e}_{1}
\end{array}\right)
$$

Compute the characteristic polynomial and the complex eigenvalues of A. Is A diagonalizable over \mathbf{R} ? over \mathbf{C} ?
(4) Suppose $\theta \in[0,2 \pi)$. What are the complex eigenvalues and correpsonding complex eigenspaces of the matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) ?
$$

(5) Suppose $\hat{x} \in \mathbf{C}^{n}$ a vector such that $\hat{x}^{*} \hat{x}=1$. What are the eigenspaces of $I-2 \widehat{x} \hat{x}^{*}$?
(6) Suppose A is an $n \times n$ matrix with characteristic polynomial

$$
p_{A}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Find an expression for $p_{A^{-1}}(t)$ by contemplating the determinant of $(t I-$ $\left.A^{-1}\right) A$.
(7) For any $n \geq 2$, give an example of an invertible $n \times n$ matrix that is not diagonalizable over \mathbf{C}.

