18.06 PSet 7 Solution

Problem 1

Solution: Consider

$$
\cos (\alpha \pm \beta)+i \sin (\alpha \pm \beta)=e^{i(\alpha \pm \beta)}=e^{i \alpha} e^{ \pm i \beta}=(\cos \alpha+i \sin \alpha)(\cos \beta \pm i \sin \beta)
$$

Compare the real and imaginary parts of both sides, we get (a) and (b). In particular, take "+" sign and $\alpha=\beta$, we have

$$
\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha .
$$

So we get (c) and (d).

Problem 2

Solution: These identities come from direct calculation. Let us solve (d), (e) and (h) here.
Write $z=a+b i$ and $w=c+d i$, then $z w=(a c-b d)+(a d+b c) i$. Therefore

$$
M_{z} M_{w}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
c & -d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & -a d-b c \\
a d+b c & a c-b d
\end{array}\right)=M_{z w} .
$$

In particular, take $w=z^{-1}$ in the above equality, we get

$$
M_{z} M_{z^{-1}}=M_{z z^{-1}}=M_{1}=I
$$

hence

$$
M_{z^{-1}}=\left(M_{z}\right)^{-1} .
$$

Direct computation shows that

$$
p_{M_{z}}(t)=\operatorname{det}\left(\begin{array}{cc}
t-a & -b \\
b & t-a
\end{array}\right)=t^{2}-2 a t+a^{2}+b^{2}=t^{2}-(z+\bar{z}) t+z \bar{z}
$$

Problem 3

Solution: The characteristic polynomial is

$$
p_{A}(t)=\operatorname{det}\left(\begin{array}{cccccc}
\lambda & 0 & 0 & \ldots & 0 & -1 \\
-1 & \lambda & 0 & \ldots & 0 & 0 \\
0 & -1 & \lambda & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & 0 \\
0 & 0 & 0 & \ldots & -1 & \lambda
\end{array}\right)=\lambda^{n}-1
$$

Therefore A has n distinct eigenvalues $\lambda_{k}=e^{2 \pi(k-1) i / n}$ for $k=1,2, \ldots, n$. These eigenvalues are all real if and only if $n=1$ or $n=2$. Therefore A is always diagonalizable over \mathbb{C}, it is diagonalizable over \mathbb{R} if and only if $n=1$ or $n=2$.

Problem 4

Solution: By Problem 1, this matrix is $M_{e^{i \theta}}$ and its characteristic polynomial is

$$
t^{2}-\left(e^{i \theta}+e^{-i \theta}\right) t+e^{i \theta} e^{-i \theta}=\left(t-e^{i \theta}\right)\left(t-e^{-i \theta}\right)
$$

Therefore its eigenvalues are $\lambda_{1}=e^{i \theta}$ and $\lambda_{2}=e^{-i \theta}$. The corresponding eigenvectors are $(i, 1)^{T}$ and $(1, i)^{T}$ respectively.

Problem 5

Solution: This is the complex version of Householder matrix (see Problem 7 of PSet 6). The only eigenvalues are 1 (multiplicity $n-1$) amd -1 (multiplicity 1). The eigenspace of eigenvalue -1 is the line spanned by \hat{x} and the eigenspace of eigenvalue 1 is the hyperplane ($(n-1)$-dimensional) consisting of vectors orthogonal to \hat{x}, i.e. all the vectors v such that $v^{*} \hat{x}=0$.

Problem 6

Solution: Let the characteristic polynomial of A^{-1} be

$$
\operatorname{det}\left(t I-A^{-1}\right)=t^{n}+b_{n-1} t^{n-1}+\cdots+b_{1} t+b_{0}
$$

Notice that A is invertible, so $a_{0}=(-1)^{n} \operatorname{det} A \neq 0$. On one hand, we have

$$
\operatorname{det}\left(\left(t I-A^{-1}\right) A\right)=\operatorname{det}\left(t I-A^{-1}\right) \operatorname{det} A=(-1)^{n} a_{0}\left(t^{n}+b_{n-1} t^{n-1}+\cdots+b_{1} t+b_{0}\right)
$$

On the other hand,

$$
\begin{aligned}
\operatorname{det}\left(\left(t I-A^{-1}\right) A\right) & =\operatorname{det}(t A-I)=\operatorname{det}\left(-t\left(\frac{1}{t} I-A\right)\right)=(-t)^{n} \operatorname{det}\left(\frac{1}{t} I-A\right) \\
& =(-t)^{n}\left(\left(\frac{1}{t}\right)^{n}+a_{n-1}\left(\frac{1}{t}\right)^{n-1}+\cdots+a_{0}\right) \\
& =(-1)^{n}\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+1\right)
\end{aligned}
$$

Compare these two equations, we get

$$
\operatorname{det}\left(t I-A^{-1}\right)=t^{n}+b_{n-1} t^{n-1}+\cdots+b_{1} t+b_{0}=t^{n}+\frac{a_{1}}{a_{0}} t^{n-1}+\cdots+\frac{a_{n-1}}{a_{0}} t+\frac{1}{a_{0}}
$$

Problem 7

Solution: For any complex number $\lambda \in \mathbb{C}$, the $n \times n$ matrix

$$
J_{\lambda}:=\left(\begin{array}{ccccccc}
\lambda & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & \lambda & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & \lambda & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right)
$$

is not diagonalizable over \mathbb{C}. This is because that though the only eigenvalue of J_{λ} is λ with multiplicity $n \geq 2$, its eigenspace is 1 -dimensional (see Problem 6 of PSet 6).

