
MIT 18.06 Advanced Standing Exam Solutions

August 2016

Problem 1:
(a) A − µI is singular if and only if µ is an eigenvalue, so µ0 must be one of

1, 2, 3, . . . , 10.

(b) The exact solution is x =
∑10
i=1

xix
T
i b

(i−µ)xT
i xi

, i.e. we project the right-hand
side b on to the basis of eigenvectors, using the fact that the eigenvectors
must be orthogonal (but not necessarily normalized) for a real-symmetric
A with distinct eigenvalues. For µ = 1.001, we would typically expect
(without prior knowledge of b) that it will be dominated by the term for
the eigenvalue 1 (where |λ − µ| is smallest), and the best approximation
for x in terms of a single eigenvector is therefore

x ≈ −1000x1x
T
1 b

x1x1
.

Of course, in the event that b happened to be nearly orthogonal to x1, then
the best approximation would be by some other eigenvector (depending
on which one b had the biggest projection onto), but without knowing
anything more about b the above answer is the most reasonable guess.
(For a random b, the above choice has orders of magnitude smaller average
error than the projection onto any other eigenvector of A.)

1



Problem 2:
(a) Because x has four components, A must be an m× 4 matrix, i.e. n = 4 .

Because there are two degrees of freedom in the solution, the nullspace
N(A) must have dimension 2; since this is n − r, it means that the rank
is r = 2 . All we can say about m is that m ≥ r, and hence m ≥ 2 .

(b) Let’s choose m = 2 since that is the smallest. It is also easiest to write
down an A in reduced-row-echelon form A = (I F ), so that we can read

off the nullspace vectors
(
−F
I

)
. Noticing that the lowest two rows of

the nullspace vectors


−2
1
1
0

 and


1
0
0
1

 from above indeed form a block I

of the 2× 2 identity matrix (if we swap their order), that means that the
first two rows give −F . This gives a possible A of

A =

(
1 0 2 −1
0 1 −1 0

)
.

(It is easy to check that the rows of A are orthogonal to the nullspace

vectors above.) This choice of A gives ~b = A~x =

(
−1
1

)
.

Of course, there are many other possible solution techniques. A very
systematic approach (the sort of approach you might use on a computer
if you had to deal with many problems of this sort), is to (i) orthogo-
nalize the two nullspace vectors with Gram–Schmidt and then (ii) take
two arbitrary vectors and project them onto the subspace orthogonal to
N(A) in order to form the row vectors of A. (The annoyance of doing
Gram–Schmidt by hand is all the square roots in the normalizations, but
those can be avoided in hand calculations by rescaling.) In this particular
case, we would start by adding the column vectors (1,0,0,1) to (-2,1,1,0)
to make them orthogonal, obtaining an orthonormal basis (1, 0, 0, 1)T /

√
2

and (−1, 1, 1, 1)T /2 for N(A), and then project e.g. the vectors (4, 0, 0, 0)
and (0, 4, 0, 0) (choosing the 4’s here to avoid fractions) to be orthogonal
to these two vectors, yielding rows (1,1,1,-1) and (1,3,-1,-1) of A. Hence
in this case b would be (0, 2)T .

Another systematic approach, given two nullspace vectors that form a

4× 2 matrix N =

(
B
C

)
, would be to notice that it forms the nullspace

of the reduced-row echelon matrix A = (I, −BC−1). Then you could use
use Gaussian elimation (or the explicit 2 × 2 formula) to find C−1, at
which point you multiply it by B to get A.
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Finally, for such a small matrix, you can just use trial-and-error. For
1
0
0
1

 to be in the nullspace, the first and last columns of A must be equal

and opposite, and picking them to be (1, 0) and (−1, 0) is a simple possi-
bility. After that it just requires a little experimentation with the middle
two columns to make the rows orthogonal to the second nullspace vector.
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Problem 3:

(a) Defining ~uk =

(
fk+1

fk

)
, re-express the above recurrence as ~uk+1 = A~uk,

and give the matrix A.

(b) This recurrence is ~uk+1 = A~uk for A =

(
4 3
1 0

)
.

(c) Using the formula for the 2× 2 characteristic polynomial, we get det(A−
λI) = λ2 − λ traceA + detA = 0 = λ2 − 4λ − 3, which has solutions
λ± = 2 ±

√
22 + 3 = 2 ±

√
7. The largest |λ| is 2 +

√
7, and hence we

expect that this sequence (which corresponds to multiplying by A over
and over again) will approach the corresponding eigenvector as k → ∞.
If we write this eigenvector as the column vector x = (r, 1)T , then we see
that Ax = λx implies that r = λ (from the second row). Since r is exactly

the ratio fk+1/fk , it follows that fk+1/fk → 2 +
√
7 .

A good check is that the first row of Ax = λ+x is also satisfied: 4(2 +√
7) + 3 = (2 +

√
7)(2 +

√
7), which is true (both sides give 11 + 4

√
7).

(d) The sequence above starts with f0 = f1 = 1, and |fk| grows rapidly with k.
Keep f0 = 1, but give a different value of f1 that will make the sequence
(with the same recurrence fk+2 = 4fk+1 + 3fk) approach zero (fk → 0)
as k →∞.

(e) The other eigenvalue is λ− = 2 −
√
7 has magnitude |λ−| < 1 (you don’t

need a calculator to know this, since 2 =
√
4 <

√
7 <

√
9 = 3). Hence,

if we start with something proportional to that eigenvector,
(

2−
√
7

1

)
from above, then the solutions will decay as λk− → 0. If f0 = 1, this means
f1 = 2−

√
7.

(Of course, if you try this on a computer, the solutions will eventually
blow up anyway, because rounding errors will eventually pull in a nonzero
component of the other eigenvector.)
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Problem 4:
(a) True. [Non-required proof: QTQ = I, so detQTQ = 1 = (detQT )(detQ) =

(detQ)2, and the result follows. Alternatively, all the eigenvalues of a uni-
tary matrix have magnitude 1, and the determinant is the product of
these.]

(b) False. You get a steady state for multiplying repeatedly by Markov ma-
trices, but here we have an ODE so we are exponentiating them. Counter-
example: consider the 1× 1 Markov matrix A = 1 . du/dt = Au = u has
the solution u = u(0)et, which obviously blows up.

(c) True.

(d) False. Counter-example: Let S and T be two distinct lines through the
origin, say the x axis and the y axis. Their union (the x and y axes) is not
a subspace, because if you add a point (1, 0, 0) on the x axis with a point
(0, 1, 0) on the y axis, then you get a point (1, 1, 0) which is in neither, so
the space is not closed under addition.

(e) False. Counter-example: Suppose A is the n× n identity matrix, and B
is an n × n matrix of zeros. Then AB is also a matrix of zeros, whose
column space is the zero vector, which does not contain the column space
C(A) = Rn.

(f) True. [Non-required proof: If y ∈ C(AB) , then y = ABx for some x,
hence y = Az for z = Bx , hence y ∈ C(A). Hence C(AB) ⊆ C(A).]
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Problem 5:
(a) (The proof here is very similar to the proof of orthogonality of the eigen-

vectors of a real-symmetric matrix.) By definition, Ax = λxx and AT y =
λyy. Multiply both sides of the Ax equation by yT on the left. Then
yTAx = λxy

Tx = (AT y)Tx = λyy
Tx, and hence (λx − λy)yTx = 0. If

λx 6= λy , then λx − λy 6= 0 and we must have yTx = 0.

(b) We have AT =

(
1 ε
1 1

)
. If we write y =

(
u
1

)
for an unknown u, then

from the second row of AT y = λy we get u+ 1 = λ . Since λ± = 1±
√
ε

(the same as A), we immediately get the corresponding eigenvectors to
be:

y± =

(
±
√
ε

1

)
.

We can then easily check that yT−x+ = −
√
ε+
√
ε = 0

(c) For ε = 0, then x+ = x− and the matrix A is defective (no complete
basis of eigenvectors). In this case, yT+x+ = 0, as can easily be checked by
direct calculation: (0, 1) · (1, 0)T = 0.
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Problem 6:
(a) Gaussian elimination, because that corresponds to multiplying A on

the left by an invertible matrix (the row operations) to get a new ma-
trix (there, in upper-triangular form). In contrast, Gram–Schmidt corre-
sponds to multiplying A on the right by an invertible matrix to get an
orthogonal matrix Q = AR−1 (the ortho-normalized columns). (Techni-
cally, QR factorization A = QR, via Gram–Schmidt or other means, could
be interpreted as multiplying A on the left by the unitary matrix Q∗ to
get the upper-triangular matrix R; if you explicitly defended a choice of
Gram–Schmidt in this way, then that is an acceptable answer.) Similar
matrices correspond to multiplying A on both the left and right (by a
matrix and its inverse) to get a matrix with the same eigenvalues. Diag-
onalization is a special case of similar matrices to get a diagonal matrix.
Least-squares involves either computing ATA for the normal equations,
or doing QR factorization as discussed previously; also, typically least-
squares is for cases where you can not solve A~x = ~b exactly.

(b) Multiplying A on the left by an invertible matrix, just as in Gaussian
elimination, does not change the null space or the row space. Hence we
can determine N(A) = N(B) and C(AT ) = C(BT ).

(c) For Ax = b to be solvable for all b, we need A to have full row rank, i.e.
if A is m × n then we need C(A) = Rm, or rank(A) = rank(B) = m.
Equivalently, B must have full row rank. Equivalently, C(B) = Rm.

(d) Given Ax = b, we know XAx = Bx = Xb, hence

Xb = Bx =

 1 2 −1
4 9 −6
1 4 −5

 1
2
3

 =

 2
4
−6

 .

(e) Since N(A) = N(B), we should just take our solution (1, 2, 3)T and add
any element of N(B). The most straightforward way to find N(B) is by
Gaussian elimination to rref form: 1 2 −1

4 9 −6
1 4 −5

 
 1 2 −1

0 1 −2
0 2 −4

 
 1 2 −1

0 1 −2
0 0 0

 
 1 0 3

0 1 −2
0 0 0

 ,

at which point it is clear that B has rank 2 (2 pivots), and a basis for
its nullspace is (−3, 2, 1)T . (We can easily double-check this vector by
multiplying B to get zero.) Hence the complete solution is

x =

 1
2
3

+ c

 −32
1


for any scalar c.
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