MIT 18.06 Advanced Standing Exam

Your name is:

August 2016

problem	score
1	
2	
3	
4	
5	
6	
total	

Problem 1:

Suppose A is a 10×10 real-symmetric matrix with eigenvalues 1,2,3,4,5,6,7,8,9,10, and corresponding (real) eigenvectors are x_1, \ldots, x_{10} . You are solving the equation $(A - \mu I)x = b$, for some number μ , and you notice that the solution x is blowing up $(||x|| \to \infty)$ as μ approaches some number μ_0 .

- (a) What are the possible values of μ_0 for which this could be true?
- (b) If $\mu = 1.001$, give a good choice of approximate formula for x in terms of b and one of the eigenvectors of A, assuming b is chosen at random.

Problem 2:

The complete solution to $A\vec{x} = \vec{b}$ is

$$\vec{x} = \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} + c \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} + d \begin{pmatrix} -2\\1\\1\\0 \end{pmatrix}$$

for any arbitrary constants c and d.

- (a) If A is an $m \times n$ matrix with rank r, give as much true information as possible about the integers m, n, and r.
- (b) Construct an explicit example of a possible matrix A and a possible righthand side \vec{b} with the solution \vec{x} above. (There are many acceptable answers; you only have to provide one.)

Problem 3:

A sequence of numbers f_0, f_1, f_2, \ldots is defined by the recurrence

$$f_{k+2} = 4f_{k+1} + 3f_k,$$

with starting values $f_0 = 1$, $f_1 = 1$. (Thus, the first few terms in the sequence are $1, 1, 7, 31, 145, 673, 3127, \ldots$)

- (a) Defining $\vec{u}_k = \begin{pmatrix} f_{k+1} \\ f_k \end{pmatrix}$, re-express the above recurrence as $\vec{u}_{k+1} = A\vec{u}_k$, and give the matrix A.
- (b) Find the eigenvalues of A, and use these to predict what the ratio f_{k+1}/f_k of successive terms in the sequence will approach for large k.
- (c) The sequence above starts with $f_0 = f_1 = 1$, and $|f_k|$ grows rapidly with k. Keep $f_0 = 1$, but give a *different* value of f_1 that will make the sequence (with the same recurrence $f_{k+2} = 4f_{k+1} + 3f_k$) approach zero $(f_k \to 0)$ as $k \to \infty$.

Problem 4:

True or false. Give a counter-example if *false*. (You *don't* need to provide a reason or proof if true.)

- (a) If Q is an orthogonal matrix, then $|\det Q| = 1$.
- (b) If A is a Markov matrix, then $d\vec{u}/dt = A\vec{u}$ approaches some finite constant vector (a "steady state") for any initial condition $\vec{u}(0)$.
- (c) If S and T are subspaces of \mathbb{R}^3 , then their intersection (points in *both* S and T) is also a subspace.
- (d) If S and T are subspaces of \mathbb{R}^3 , then their union (points in *either S or T*) is also a subspace.
- (e) The column space of AB contains the column space of A.
- (f) The column space of AB is contained in the column space of A.

Problem 5:

Recall that A and A^T have the same eigenvalues for a square matrix A.

- (a) Let x be an eigenvector of A for an eigenvalue λ_x , and let y be an eigenvector of A^T for an eigenvalue λ_y . Show that x and y are orthogonal $(y^T x = 0)$ if $\lambda_x \neq \lambda_y$. (Do not assume A is symmetric!)
- (b) If $A = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix}$ for some number $\epsilon < 1$, then its eigenvalues are $\lambda_{\pm} = 1 \pm \sqrt{\epsilon}$ and the corresponding eigenvectors are $x_{\pm} = \begin{pmatrix} 1 \\ \pm \sqrt{\epsilon} \end{pmatrix}$. Find the eigenvectors y_{\pm} of A^T , and check that $y_{-}^T x_{+} = 0$, consistent with what you showed in the previous part.
- (c) For $\epsilon = 0$, then $x_+ = x_-$ and the matrix A is _____. In this case, $y_+^T x_+ =$ ____.

Problem 6:

Your 18.06 TA has a matrix A and wants you to solve $A\vec{x} = \vec{b}$. Being a sadist like most TAs, however, she does not tell you what A is, and instead gives you a matrix B = XA. All you are told about X is that it is an invertible matrix.

- (a) Why are you being asked this question? Specifically, what technique in the 18.06 is the transformation $A \rightarrow B$ most similar to: (i) Gaussian elimination (ii) Gram-Schmidt; (iii) diagonalization; (iv) similar matrices; or (v) least-squares? Why?
- (b) Which of the four fundamental subspaces of A, if any, can you determine from B alone?
- (c) What property/properties must B have in order for $A\vec{x} = \vec{b}$ to have a solution for any \vec{b} ?

(d) Suppose
$$B = \begin{pmatrix} 1 & 2 & -1 \\ 4 & 9 & -6 \\ 1 & 4 & -5 \end{pmatrix}$$
 and one solution is $\vec{x} = (1, 2, 3)^T$. What is $\vec{X}\vec{b}$?

(e) Using the the information from part (d), find all solutions \vec{x} .