MIT 18.06 Advanced Standing Exam

Your name is: \qquad
August 2016

problem	score
1	
2	
3	
4	
5	
6	
total	

Problem 1:

Suppose A is a 10×10 real-symmetric matrix with eigenvalues $1,2,3,4,5,6,7,8,9,10$, and corresponding (real) eigenvectors are x_{1}, \ldots, x_{10}. You are solving the equation $(A-\mu I) x=b$, for some number μ, and you notice that the solution x is blowing up $(\|x\| \rightarrow \infty)$ as μ approaches some number μ_{0}.
(a) What are the possible values of μ_{0} for which this could be true?
(b) If $\mu=1.001$, give a good choice of approximate formula for x in terms of b and one of the eigenvectors of A, assuming b is chosen at random.
(blank page for your work if you need it)

Problem 2:

The complete solution to $A \vec{x}=\vec{b}$ is

$$
\vec{x}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)+d\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right)
$$

for any arbitrary constants c and d.
(a) If A is an $m \times n$ matrix with rank r, give as much true information as possible about the integers m, n, and r.
(b) Construct an explicit example of a possible matrix A and a possible righthand side \vec{b} with the solution \vec{x} above. (There are many acceptable answers; you only have to provide one.)
(blank page for your work if you need it)

Problem 3:

A sequence of numbers $f_{0}, f_{1}, f_{2}, \ldots$ is defined by the recurrence

$$
f_{k+2}=4 f_{k+1}+3 f_{k}
$$

with starting values $f_{0}=1, f_{1}=1$. (Thus, the first few terms in the sequence are $1,1,7,31,145,673,3127, \ldots .$.
(a) Defining $\vec{u}_{k}=\binom{f_{k+1}}{f_{k}}$, re-express the above recurrence as $\vec{u}_{k+1}=A \vec{u}_{k}$, and give the matrix A.
(b) Find the eigenvalues of A, and use these to predict what the ratio f_{k+1} / f_{k} of successive terms in the sequence will approach for large k.
(c) The sequence above starts with $f_{0}=f_{1}=1$, and $\left|f_{k}\right|$ grows rapidly with k. Keep $f_{0}=1$, but give a different value of f_{1} that will make the sequence (with the same recurrence $\left.f_{k+2}=4 f_{k+1}+3 f_{k}\right)$ approach zero $\left(f_{k} \rightarrow 0\right)$ as $k \rightarrow \infty$.
(blank page for your work if you need it)

Problem 4:

True or false. Give a counter-example if false. (You don't need to provide a reason or proof if true.)
(a) If Q is an orthogonal matrix, then $|\operatorname{det} Q|=1$.
(b) If A is a Markov matrix, then $d \vec{u} / d t=A \vec{u}$ approaches some finite constant vector (a "steady state") for any initial condition $\vec{u}(0)$.
(c) If S and T are subspaces of \mathbb{R}^{3}, then their intersection (points in both S and T) is also a subspace.
(d) If S and T are subspaces of \mathbb{R}^{3}, then their union (points in either S or T) is also a subspace.
(e) The column space of $A B$ contains the column space of A.
(f) The column space of $A B$ is contained in the column space of A.
(blank page for your work if you need it)

Problem 5:

Recall that A and A^{T} have the same eigenvalues for a square matrix A.
(a) Let x be an eigenvector of A for an eigenvalue λ_{x}, and let y be an eigenvector of A^{T} for an eigenvalue λ_{y}. Show that x and y are orthogonal $\left(y^{T} x=0\right)$ if $\lambda_{x} \neq \lambda_{y}$. (Do not assume A is symmetric!)
(b) If $A=\left(\begin{array}{ll}1 & 1 \\ \epsilon & 1\end{array}\right)$ for some number $\epsilon<1$, then its eigenvalues are $\lambda_{ \pm}=$ $1 \pm \sqrt{\epsilon}$ and the corresponding eigenvectors are $x_{ \pm}=\binom{1}{ \pm \sqrt{\epsilon}}$. Find the eigenvectors $y_{ \pm}$of A^{T}, and check that $y_{-}^{T} x_{+}=0$, consistent with what you showed in the previous part.
(c) For $\epsilon=0$, then $x_{+}=x_{-}$and the matrix A is \qquad . In this case, $y_{+}^{T} x_{+}=$ \qquad .

Problem 6:

Your 18.06 TA has a matrix A and wants you to solve $A \vec{x}=\vec{b}$. Being a sadist like most TAs, however, she does not tell you what A is, and instead gives you a matrix $B=X A$. All you are told about X is that it is an invertible matrix.
(a) Why are you being asked this question? Specifically, what technique in the 18.06 is the transformation $A \rightarrow B$ most similar to: (i) Gaussian elimination (ii) Gram-Schmidt; (iii) diagonalization; (iv) similar matrices; or (v) least-squares? Why?
(b) Which of the four fundamental subspaces of A, if any, can you determine from B alone?
(c) What property/properties must B have in order for $A \vec{x}=\vec{b}$ to have a solution for any \vec{b} ?
(d) Suppose $B=\left(\begin{array}{lll}1 & 2 & -1 \\ 4 & 9 & -6 \\ 1 & 4 & -5\end{array}\right)$ and one solution is $\vec{x}=(1,2,3)^{T}$. What is $X \vec{b} ?$
(e) Using the the information from part (d), find all solutions \vec{x}.
(blank page for your work if you need it)

