
Chutes-and-Ladders

September 7, 2017

In [1]: using PyPlot, Interact

1 Chutes and Ladders

Chutes and Ladders, a version of an ancient Indian board game called Snakes and Ladders, is a simple and
popular children’s board game.

• There are 100 numbered spaces, plus an unmarked starting position 0.
• Players take turns generating a random number from 1 to 6 (e.g. by rolling a die or spinning a wheel),

and move a marker that many spaces.
• If you land at the bottom of a ladder or the top of a chute (snake), then your marker is transported

across the board up the ladder or down the chute.
• The first player whose marker reaches position 100 wins.

Here is an image of a game board:
A simple question that one might ask is: how many moves does it typically take to finish the

game?
It turns out that an elegant analysis of this game is possible via Markov matrices. Reviews of this idea

can be found in this 2011 blog post or this article by Jeffrey Humpherys at BYU.
The key idea is to represent the board by a 101×101 matrix M, whose entry Mi,j is the probability of

going from position j to position i.

1.1 Simplified game: No chutes or ladders

To start with, let’s analyze a boring version of the game, in which there are no chutes or ladders. On each
turn, you simply move forward 1 to 6 spaces until you reach the end.

The corresponding matrix M is essentially:

Mi,j =

{
1
6 j ∈ {i− 1, i− 2, . . . , i− 6}
0 otherwise

since there is a 1/6 chance of moving 1,2,. . . ,6 spaces from j. However, the final row is modified, because
you can get to space 100 from space 99 if you roll anything, from space 98 if you roll a 2 or more, etcetera.
And once you get to position 100, you stay there.

In [2]: M = zeros(101,101)

for i = 2:100

M[i,max(1,i-6):(i-1)] = 1/6

end

last row

for i = 1:6

M[101,101-i] = (7-i)/6 # = 6/6, 5/6, 4/6, ..., 1/6

end

M[101,101] = 1 # once we get to the last space, we stay there

M

1

https://en.wikipedia.org/wiki/Snakes_and_Ladders
https://en.wikipedia.org/wiki/Stochastic_matrix
http://www.datagenetics.com/blog/november12011/
https://math.byu.edu/~jeffh/mathematics/games/chutes/chutes.html

Out[2]: 101×101 Array{Float64,2}:
0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.166667 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.166667 0.166667 0.0 0.0 0.0 0.0 0.0 0.0

0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0 0.0

0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0

0.166667 0.166667 0.166667 0.166667 ... 0.0 0.0 0.0 0.0

0.166667 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0

0.0 0.166667 0.166667 0.166667 0.0 0.0 0.0 0.0

0.0 0.0 0.166667 0.166667 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.166667 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
...

...
...

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.166667 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.166667 0.166667 0.0 0.0

0.0 0.0 0.0 0.0 ... 0.666667 0.833333 1.0 1.0

Now, we start on position 0, corresponding to j = 1. This is described by the vector

e1 =

1
0
0
...
0

After one move, our probability of being on each spot is given by

Me1 =

0
1/6
1/6
1/6
1/6
1/6
1/6
0
...
0

(the first column of M).

In [3]: e1 = zeros(101); e1[1] = 1

M*e1

2

Out[3]: 101-element Array{Float64,1}:
0.0

0.166667

0.166667

0.166667

0.166667

0.166667

0.166667

0.0

0.0

0.0

0.0

0.0

0.0
...

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

That is, there is a 1/6 chance of being in positions 1, 2, 3, 4, 5, or 6.
After two moves, the probability distribution is given by M2e1:

In [4]: M^2 * e1

Out[4]: 101-element Array{Float64,1}:
0.0

0.0

0.0277778

0.0555556

0.0833333

0.111111

0.138889

0.166667

0.138889

0.111111

0.0833333

0.0555556

0.0277778
...

0.0

0.0

0.0

0.0

0.0

0.0

3

0.0

0.0

0.0

0.0

0.0

0.0

And so on.
In fact, the matrix M is precisely a Markov matrix. It has the property that the sum of every

column is 1, as can be checked in Julia by:

In [5]: sum(M, 1) # sum M along the first dimension, i.e. sum M[U+1D62][U+2C7C] over i, i.e. sum each column

Out[5]: 1×101 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The eigenvalues of this matrix are weird looking: there is a single steady state (eigenvalue 1), and all
other eigenvalues are zero!

In [6]: eigvals(M)

Out[6]: 101-element Array{Float64,1}:
1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
...

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

What is actually happening here is that this matrix is not diagonalizable — it is defective. The matrix
X of eigenvectors is singular:

In [7]: λ, X = eig(M)

det(X)

Out[7]: 0.0

4

https://en.wikipedia.org/wiki/Defective_matrix

Let’s not worry about that for now (we will cover defective matrices later), and instead focus on the
steady-state eigenvalue λ=1. The corresponding eigenvector is just the unit vector e101, because the
steady state is the situation where we have reached the last spot on the board, at which point we stay there
forever:

In [8]: X[:,1]

Out[8]: 101-element Array{Float64,1}:
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
...

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

Let’s plot this probability distribution as it evolves over many moves, plotting it on a 2d grid that
resembles the usual Chutes and Ladders board.

In [9]: # Plot the probabilities on something like a chutes and ladders board. We won’t show the starting position (0)

since that is not on the board.

function plotchutes(p)

P = reshape(p[2:101], 10,10).’ # reshape to a 10×10 array and transpose to row-major

every other row should be reversed, corresponding to how players "zig-zag" across the board:

for i = 2:2:10

P[i,:] = reverse(P[i,:])

end

imshow(P, aspect="equal", cmap="Reds", norm=PyPlot.matplotlib["colors"]["LogNorm"](vmin=1e-3, vmax=1), origin="lower", interpolation="none")

colorbar(label="probability")

xticks(-0.5:1:10, visible=false)

yticks(-0.5:1:10, visible=false)

grid()

for i = 1:10, j = 1:10

n = (i-1)*10 + j

x = iseven(i) ? 10-j : j-1

y = i-1

5

text(x,y, "$n", horizontalalignment="center", verticalalignment="center")

end

end

Out[9]: plotchutes (generic function with 1 method)

In [10]: fig = figure()

@manipulate for n in slider(1:100, value=1)

withfig(fig) do

plotchutes(M^n*e1)

title("distribution after $n moves")

end

end

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"",1,1:100,"horizontal",true,"d",true)

Out[10]:

This is a boring game: you move forward monotonically along the board until you reach the end. After
100 moves, the probability of having reached the end is 100%, because on each turn you move at least 1
space forward:

6

In [11]: M^100*e1

Out[11]: 101-element Array{Float64,1}:
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
...

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

We can plot the probability eT101M
ne1 of finishing the game after ≤ n steps (with a single player) as a

function of n:

In [12]: plot(0:100, [(M^n * e1)[end] for n = 0:100], "b.-")

xlabel("number of moves n")

ylabel("probability of finishing in ≤ n moves")

grid()

title("boring chutes & ladders (no chutes or ladders)")

7

Out[12]: PyObject <matplotlib.text.Text object at 0x325e78d50>

If p(n) = eT101M
ne1 is the probability of finishing in ≤ n moves, then the probability of finishing in

exactly n moves is p(n)−p(n−1). The Julia diff function will compute this difference for us given a vector
of p values:

In [13]: plot(1:100, diff([(M^n * e1)[end] for n = 0:100]), "b.-")

xlabel("number of moves n")

ylabel("probability of finishing in n moves")

grid()

title("boring chutes & ladders (no chutes or ladders)")

8

Out[13]: PyObject <matplotlib.text.Text object at 0x328aa0610>

And the expected number of moves is

∞∑
n=1

n[p(n)− p(n− 1)]

In [14]: sum((1:100) .* diff([(M^n * e1)[end] for n = 0:100]))

Out[14]: 29.04761904761906

1.2 Adding chutes and ladders

Now, we will add in the effect of chutes and ladders. After you make each move represented by M above,
then we additionally go up a ladder or down a chute if we landed on one. We represent this by a transition
matrix T , where Tij = 1 if there is a ladder/chute from j to i. For positions j with no chute or ladder, we
set Tjj = 1.

The following is the list of chutes and ladders from the game board shown at the top:

In [15]: T = zeros(101,101)

for t in (1=>39, 4=>14, 9=>31, 28=>84, 36=>44, 51=>67, 80=>100, 71=>91, # ladders

16=>6, 47=>26, 49=>11, 56=>53, 64=>60, 92=>73, 95=>75, 98=>78) # chutes

9

T[t[2]+1,t[1]+1] = 1

end

Set T[j,j] = 1 in spaces with no chute/ladder

for j = 1:101

if all(T[:,j] .== 0)

T[j,j] = 1

end

end

The matrix T is also a Markov matrix!

In [16]: sum(T,1)

Out[16]: 1×101 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Making the move M followed by the transition T is represented by their product TM , which is also a
Markov matrix. (The product of any Markov matrices is also a Markov matrix.)

In [17]: sum(T*M, 1)

Out[17]: 1×101 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0

After a single move, the probability distribution is TMe1, and we see the effect of the two ladders that
can be reached in a single move:

In [18]: plotchutes(T*M*e1)

title("probability distribution after 1 move")

10

Out[18]: PyObject <matplotlib.text.Text object at 0x329030250>

As above, the probability distribution after n moves is (TM)ne1, and it is interesting to plot this:

In [19]: fig = figure()

@manipulate for n in slider(1:100, value=1)

withfig(fig) do

plotchutes((T*M)^n*e1)

title("distribution after $n moves")

end

end

Interact.Slider{Int64}(Signal{Int64}(1, nactions=1),"",1,1:100,"horizontal",true,"d",true)

Out[19]:

11

Games can end much more quickly because of the ladders, but they can also take much longer because
of the chutes. Let’s plot the probability distribution vs. n as before:

In [20]: plot(1:100, diff([((T*M)^n * e1)[end] for n = 0:100]), "b.-")

plot(1:100, diff([(M^n * e1)[end] for n = 0:100]), "r.--")

xlabel("number of moves n")

ylabel("probability of finishing in n moves")

grid()

title("number of moves to finish chutes & ladders")

legend(["chutes & ladders", "no chutes/ladders"])

12

Out[20]: PyObject <matplotlib.legend.Legend object at 0x329705110>

The expected number of moves (for a single player) is:

In [21]: sum((1:1000) .* diff([((T*M)^n * e1)[end] for n = 0:1000]))

Out[21]: 27.130202016993316

Amazingly, this is about the same as the 29 moves expected when there are no chutes and ladders, but
the variance is much larger!

(In principle, we should actually sum for n=0 to ∞, but because the probability p(n) − p(n − 1) decays
exponentially for large n we can just truncate the sum.)

And unlike the boring version, the probability of the game finishing never reaches 100%. If you are
unlucky, you could be trapped playing chutes and ladders for all eternity! Let’s plot 1− p(n) vs. n:

In [22]: semilogy(0:350, [1-((T*M)^n * e1)[end] for n = 0:350], "b.-")

xlabel("number of moves n")

ylabel("probability of NOT finishing in n moves")

grid()

title("chance of long chutes & ladders game")

13

Out[22]: PyObject <matplotlib.text.Text object at 0x329a6fcd0>

Fortunately, the probability of a long game decreases exponentially fast with n.

2 Absorbing Markov matrix

It turns out that the matrix M (and TM) for this problem is something called an absorbing Markov matrix.
It is “absorbing” because the final position 101 (spot 100 on the board) cannot be escaped, and can be

reached from every other position. This has two consequences:

• Every initial vector eventually reaches this “absorbing” steady state, even though it is not a positive
Markov matrix.

• There are nice analytical formulas for the expected number of moves, the variance, etcetera. We don’t
actually have to sum up n[p(n)− p(n− 1)] as above.

Deriving these nice formulas is not too hard, but is a bit outside the scope of 18.06. But, just for fun,
here is the “clever way” to compute the expected number of moves to finish Chutes & Ladders:

In [23]: A = (T*M)’[1:100,1:100] # the 100x100 upper-left corner of (TM)[U+1D40]

N = inv(I - A) # N[i,j] = expected number of visits to i starting at j

(N * ones(100))[1] # expected number of moves to finish starting at 1

Out[23]: 27.130202016993298

This matches our brute-force calculation from above!

14

https://en.wikipedia.org/wiki/Absorbing_Markov_chain

