
Eigenvalue-Intro

September 7, 2017

This notebook is our introduction to the concept of eigenvalues and eigenvectors in 18.06. Unlike the
textbook, however, I’m going to approach the subject a little differently. I’m going to work backwards:
starting at what we would like to obtain (make matrices act like scalars) and go backwards to the
methods and conditions to achieve this.

1 Scalars are easy, matrices are hard?

Multiplying a vector by a scalar is easy to understand. For example, if we multiply a vector x by 0.1 over
and over again, we get

0.1nx→ 0

The direction remains the same, but the magnitude decreases by a factor of 10 each time we multiply,
asympotically going to zero.

In contrast, multiplying by a matrix is a complicated operation. Easy for a computer, but hard to
understand if the matrix is big. If we multiply a vector x by a matrix A over and over, what happens?

Anx→???

Hard to say at a glance, even if I tell you what A is!
Also, lots of things that are easy with scalars λ are hard with matrices A. For example:

• Solving λx = b is easy: x = λ−1b (unless λ = 0). Solving Ax = b is hard; even if A is nonsingular,
A−1b is a lot of work to compute. Inverting matrices is harder than inverting numbers!

• It’s easy to tell whether λx = b has a solution, and whether it is unique: unique solutions if α 6= 0,
and otherwise if λ = 0 then there are (infinitely many) solutions only for b = 0. For Ax = b, we need
to work out the rank, nullspace, etcetera.

• Repeated multiplication (powers): λn is easy to compute and understand, An is hard.

• λn will go to zero as n→∞ if |λ| < 1, and will blow up if |λ| > 1. What about An?

• Solving the ordinary differential equation (ODE) dx
dt = λx is easy: x(t) = eλtx(0). Solving the

system of ODEs dx
dt = Ax seems hard. Maybe x(t) = eAtx(0), but what the heck does eA even mean?

• The solutions ∼ eλt will go to zero as t → ∞ for real λ < 0 and will blow up for λ > 0. What about
for A?

• . . . many other tasks. . .

1

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

2 Eigenvectors: Where matrices act like scalars

Suppose that we could find some x 6= 0 for which

Ax = λx

for some scalar λ. For that x, the matrix A would act like a scalar λ. Multipling, dividing, etcetera
by A would be easy for that vector (and multiples thereof)!

We call such an x an eigenvector of A, and λ the corresponding eigenvalue. Of course, αx for any
scalar α is an eigenvector of the same λ, but this is a subspace, and we only need to find a basis vector x.

But why should such magical solutions even exist?

3 Diagonal matrices are almost as easy as scalars

If we have an m×m diagonal matrix Λ, it is almost as easy to work with as a scalar:

Λ =

λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λm

In fact, it is clear that the diagonal elements λk are exactly eigenvalues, and the corresponding eigenvectors

are the standard basis vectors: the columns of the m×m identity matrix I.
For example, consider the 4× 4 matrix with λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, and λ4 = 0.4:

In [1]: Λ = diagm([0.1, 0.2, 0.4, 0.5])

Out[1]: 4×4 Array{Float64,2}:
0.1 0.0 0.0 0.0

0.0 0.2 0.0 0.0

0.0 0.0 0.4 0.0

0.0 0.0 0.0 0.5

This has four eigenvectors
1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

 ,

(along with any multiples of these vectors: again, we only need a basis for the eigenvectors).

In [2]: Λ * [10

0

0

0]

Out[2]: 4-element Array{Float64,1}:
1.0

0.0

0.0

0.0

In [3]: Λ * [0

10

0

0]

2

https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Standard_basis

Out[3]: 4-element Array{Float64,1}:
0.0

2.0

0.0

0.0

If we multiply a vector x ∈ R4 by Λ, then it multiplies the first component by 0.1, the second by 0.2,
etcetera:

In [4]: x = [1,1,1,1]

Λ * x

Out[4]: 4-element Array{Float64,1}:
0.1

0.2

0.4

0.5

Multiplying 10 times by Λ just multiplies the first component by 0.110, the second by 0.210, and so on:

In [5]: Λ^10 * x

Out[5]: 4-element Array{Float64,1}:
1.0e-10

1.024e-7

0.000104858

0.000976563

We can think about this as writing x in the basis of the eigenvectors, and then for each eigenvector, the
matrix Λ acts like a number λ:

Λnx = λn1

1
0
0
0

+ λn2

0
1
0
0

+ λn3

0
0
1
0

+ λn4

0
0
0
1

 .

Since each |λk| < 1, it is clear that Λnx→ 0 as n→∞.
Equivalently, the matrix

Λn =

λn1

λn2
λn3

λn4

itself must go to zero as n increases:

In [6]: Λ^100

Out[6]: 4×4 Array{Float64,2}:
1.0e-100 0.0 0.0 0.0

0.0 1.26765e-70 0.0 0.0

0.0 0.0 1.60694e-40 0.0

0.0 0.0 0.0 7.88861e-31

Morever, if we multiply Λ by a vector x repeatedly, it will quickly become nearly parallel to the last
eigenvector (0, 0, 0, 1), since the 0.5n term decays the most slowly. It is expecially easy to see this if we
look at the unit vector (length = 1)

Λnx

‖Λnx‖

3

In [7]: using Interact

@manipulate for n = slider(0:100, value=0)

y = Λ^n * x

y / norm(y)

end

Interact.Slider{Int64}(Signal{Int64}(0, nactions=1),"",0,0:100,"horizontal",true,"d",true)

Out[7]: 4-element Array{Float64,1}:
0.5

0.5

0.5

0.5

A diagonal matrix is nonsingular if the diagonal entries are nonzero, and the inverse Λ−1 is found
by just inverting the diagonal entries:

In [8]: inv(Λ)

Out[8]: 4×4 Array{Float64,2}:
10.0 0.0 0.0 0.0

0.0 5.0 0.0 0.0

0.0 0.0 2.5 0.0

0.0 0.0 0.0 2.0

If all matrices were diagonal, linear algebra would be a lot easier!

4 Diagonal + Change of Basis is Almost as Easy

Suppose we have an invertible m ×m matrix X. Going from x to Xc = x, or c = X−1x, is just a change
of basis: we are writing x in the basis of the columns of X, and y are the coefficients.

If X =
(
x1 x2 · · · xm

)
, where the xk are the columns, then x = Xc is with c = (c1, c2, . . . , cm) is

equivalent to:

x = Xc = c1x1 + c2x2 + · · · cmxm .

Consider the matrix A = XΛX−1, where Λ is diagonal as above. What does Ax mean? If we write:

Ax = X ΛX−1x︸ ︷︷ ︸
c︸ ︷︷ ︸

Λc

we see that Ax is equivalent to:

1. Solve Xc = x to express x in the X basis with coefficients c.

2. Multiply each component of c by the corresponding diagonal entry of Λ to get Λc.

3. Multiply Λc by X to get X(Λc) in the original (x) coordinate system (basis).

That is A is just a diagonal matrix in a different basis: we change basis, multiply the components
by scalars, then change back the basis.

Hence

Ax = AXc = XΛc = λ1c1x1 + λ2c2x2 + · · ·λmcmxm .

4

Another way of putting this is that the columns of X are eigenvectors:

Axk = λkxk

for k = 1, . . . ,m!
That is, A just multiplies each eigenvector xk by the corresponding eigenvalue λk. Again, for

each eigenvector, the matrix A just acts like a number λ.
For example, with our 4× 4 matrix Λ from above, let’s construct:

In [9]: X = [1 0 1 0

2 1 0 1

0 1 1 0

1 0 0 -1]

rank(X)

Out[9]: 4

In [10]: A = X * Λ / X

Out[10]: 4×4 Array{Float64,2}:
0.325 -0.075 0.075 -0.075

0.025 0.225 -0.025 -0.275

0.15 -0.05 0.25 -0.05

-0.1 -0.1 0.1 0.4

If we didn’t know where it came from, this matrix A wouldn’t look like anything special.
But multiplying A by any column of X just multiplies by a number. For example, multipling A by the

first column of X just multiplies by 0.1 (the first diagonal element of Λ):

In [11]: A * X[:, 1]

Out[11]: 4-element Array{Float64,1}:
0.1

0.2

0.0

0.1

Multiplying A by the second column just multiplies it by 0.2, and so on:

In [12]: A * X[:, 2]

Out[12]: 4-element Array{Float64,1}:
0.0

0.2

0.2

0.0

For these special vectors (the columns of X), which we will call eigenvectors, the matrix A acts
just like a scalar (which we call the eigenvalue).

If we solve Xc = x to write

x = c1x1 + c2x2 + c3x3 + c4x4

then Ax is just

x = 0.1c1x1 + 0.2c2x2 + 0.4c3x3 + 0.5c4x4

It is clear, therefore, that multipling any vector x repeatedly by A will make it go to zero (the length
will shrink exponentially fast). Let’s try our vector x = (1, 1, 1, 1) from above:

5

In [13]: x

Out[13]: 4-element Array{Int64,1}:
1

1

1

1

If we solve Xc = x to express it in the X basis, then we see that it has components from every column
of X:

In [14]: c = X\x

Out[14]: 4-element Array{Float64,1}:
0.5

0.5

0.5

-0.5

If we multiply A times x many times, it must go to zero for the same reason as Λnx above:

In [15]: A^100 * x

Out[15]: 4-element Array{Float64,1}:
8.03468e-41

-3.9443e-31

8.03468e-41

3.9443e-31

In [16]: (A^100*x) / norm(A^100*x)

Out[16]: 4-element Array{Float64,1}:
1.4404e-10

-0.707107

1.4404e-10

0.707107

Since this must happen for any x, An itself must go to zero:

In [17]: A^100

Out[17]: 4×4 Array{Float64,2}:
1.2052e-40 -4.01734e-41 4.01734e-41 -4.01736e-41

1.97215e-31 1.97215e-31 -1.97215e-31 -5.91646e-31

1.2052e-40 -4.01734e-41 4.01734e-41 -4.01735e-41

-1.97215e-31 -1.97215e-31 1.97215e-31 5.91646e-31

Another way to see this is to realize that:

An = AAA · · ·AAA︸ ︷︷ ︸
n times

= XΛX−1XΛX−1XΛX−1 · · ·XΛX−1XΛX−1XΛX−1 = XΛnX−1

which goes to zero because Λn goes to zero.
The formula means that

Anx = XΛnX−1x︸ ︷︷ ︸
c

= λn1 c1x1 + λn2 c2x2 + · · ·+ λnmcmxm

6

i.e. multiplying repeatedly by A just multiplies each eigenvector repeatedly by λ.
Finally, since Λ is invertible, A must be invertible too:

A−1x = c1x1/λ1 + c2x2/λ2 + · · ·

i.e. A−1x just divides each eigenvector component by the eigenvalue.

In [18]: inv(A)

Out[18]: 4×4 Array{Float64,2}:
4.375 1.875 -1.875 1.875

1.75 6.75 -1.75 4.75

-1.875 0.625 4.375 0.625

2.0 2.0 -2.0 4.0

Equivalently A−1 = XΛ−1X−1:

In [19]: X * inv(Λ) * inv(X)

Out[19]: 4×4 Array{Float64,2}:
4.375 1.875 -1.875 1.875

1.75 6.75 -1.75 4.75

-1.875 0.625 4.375 0.625

2.0 2.0 -2.0 4.0

Notice that the entries are not too big, which is not surprising since the 1/λ1 = 10 is the biggest entry
in Λ−1.

5 Eigenvectors of an arbitrary matrix

By constructing A = XΛX−1 above, we got rather arbitrary-looking m × m matrices A with m linearly
eigenvectors. This was great, because then the eigenvectors formed a basis of Rm: we could write any
vector in the basis of eigenvectors, and for each eigenvector component the matrix acts like a scalar.

Can we do the reverse? For any matrix A, can we find a basis X of eigenvectors, such that A = XΛX−1

in that basis? (This is called diagonalizing the matrix: finding a basis in which it is diagonal.) If we can
find the eigenvectors for an arbitrary A, they would tell us a lot — matrices are hard to understand, but
scalars are easy, and the eigenvalues tell us what scalars A acts like.

It turns out that this this is almost always possible. For almost any m×m matrix A we (or rather,
the computer) can find a basis of exactly m eigenvectors xk and eigenvalues λk. Julia will do this for us,
with the eig(A) function:

In [20]: eigenvalues, eigenvectors = eig(A)

Out[20]: ([0.1,0.2,0.4,0.5],

[0.408248 -7.70519e-16 0.707107 2.71948e-16; 0.816497 -0.707107 0.0 -0.707107; 8.04912e-16 -0.707107 0.707107 1.22377e-15; 0.408248 -4.98571e-16 -3.31016e-16 0.707107])

It returns exactly the same eigenvalues as above:

In [21]: eigenvalues

Out[21]: 4-element Array{Float64,1}:
0.1

0.2

0.4

0.5

7

It also returns a matrix whose columns are eigenvectors. These look a little different than X from above,
though:

In [22]: eigenvectors

Out[22]: 4×4 Array{Float64,2}:
0.408248 -7.70519e-16 0.707107 2.71948e-16

0.816497 -0.707107 0.0 -0.707107

8.04912e-16 -0.707107 0.707107 1.22377e-15

0.408248 -4.98571e-16 -3.31016e-16 0.707107

But they are just scalar multiples of the columns of X, as we can easily see by multiplying by X−1

(writing these eigenvectors in the X basis:

In [23]: round.(X \ eigenvectors, 5) # X−1 * eigenvectors, rounded to 5 digits

Out[23]: 4×4 Array{Float64,2}:
0.40825 -0.0 0.0 -0.0

0.0 -0.70711 -0.0 0.0

0.0 -0.0 0.70711 0.0

-0.0 -0.0 0.0 -0.70711

There are extremely rare exceptions called defective matrices in which you get too few eigenvectors
to form a basis for the whole Rm space. We’ll come back to those later, but for now I want to focus on the
typical cases of diagonalizable matrices where we do have m eigenvectors.

Given only A, how do we find the eigenvectors and eigenvalues? How do we know that such solutions
exist in the first place, and how many such solutions are there?

Let’s go back to the beginning. We are trying to find x 6= 0 satisfying Ax = λx. Equivalently, we want:

Ax− λx = (A− λI)x = 0

That is, we want the nullspace of A−λI. For most λ, this nullspace will be just {0}. To get a nontrivial
nullspace, we want to

• Find the values of λ such that A-λI is singular.

These λ are the eigenvalues of A.

6 The characteristic polynomial

Finding the λ such that A−λI is singular can be theoretically expressed in terms of a concept you will have
heard of before: a matrix is singular when its determinant is zero. Hence, we want to solve:

p(λ) = det(A− λI) = 0

This function p(λ) turns out to be a polynomial of degree m for an m×m matrix A, and is called the
characteristic polynomial of A. Since it is a degree-m polynomial, it will typically have m roots (possibly
complex numbers), the eigenvalues of A!

To understand this properly, we need to go back and explain determinants. All you will have seen
determinants of 2×2 and 3×3 matrices before (e.g. in 18.02), but you may not have seen them for general
m×m matrices.

Let’s plot p(λ) for our 4×4 matrix A = XΛX−1 from above, using Julia’s built-in det function:

In [24]: using PyPlot

λ = linspace(0,0.6,100)

plot(λ, [det(A - λ*I) for λ in λ], "r-")

8

https://en.wikipedia.org/wiki/Defective_matrix
https://en.wikipedia.org/wiki/Diagonalizable_matrix
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Characteristic_polynomial

plot(λ, 0*λ, "k--")

plot(diag(Λ),diag(Λ)*0, "bo")

xlabel(L"\lambda")

ylabel(L"\det(A - \lambda I)")

title("characteristic polynomial")

Out[24]: PyObject <matplotlib.text.Text object at 0x31f97b090>

This is a quartic curve, and exactly as expected there are roots (dots) at the four eigenvalues 0.1, 0.2,
0.4, and 0.5.

9

