Fibonacci

September 7, 2017

1 Fibonacci recurrence

The Fibonacci numbers are:

$$
1,1,2,3,5,8,13,21,34, \ldots
$$

Each number f_{n} in the sequence is the sum of the previous two, defining the recurrence relation:

$$
f_{n}=f_{n-1}+f_{n-2}
$$

Perhaps the most obvious way to implement this in a programming language is via recursion:

```
In [1]: function slowfib(n)
    if n < 2
            return BigInt(1) # use bigint type to support huge integers
    else
            return slowfib(n-1) + slowfib(n-2)
    end
    end
Out[1]: slowfib (generic function with 1 method)
```

Note that there is a slight catch: we have to make sure to do our computations with the BigInt integer type, which implements arbitrary precision arithmetic. The Fibonacci numbers quickly get so big that they overflow the maximum representable integer using the default (fast, fixed numbrer of binary digits) hardware integer type.

```
In [2]: [slowfib(n) for n = 1:10]
Out[2]: 10-element Array{BigInt,1}:
            1
            2
            3
            5
            8
            1 3
            21
            34
            5 5
            89
```

Not that it matters for toy calculations like this, but there are much faster ways to compute Fibonacci numbers than the recursive function defined above. The GMP library used internally by Julia for BigInt arithmetic actually provides an optimized Fibonacci-calculating function mpz_fib_ui that we can call if we want to using the low-level ccall technique:

```
In [3]: function fastfib(n)
    z = BigInt()
    ccall((:__gmpz_fib_ui, :libgmp), Void, (Ptr{BigInt}, Culong), &z, n)
    return z
    end
Out[3]: fastfib (generic function with 1 method)
In [4]: [fastfib(i) for i = 1:100]
Out[4]: 100-element Array{BigInt,1}:
            1
            1
            2
            3
            5
            8
            1 3
            21
            34
                5 5
                89
                    144
                            233
            1779979416004714189
            2880067194370816120
            4660046610375530309
            7540113804746346429
            12200160415121876738
            19740274219868223167
            31940434634990099905
            51680708854858323072
            83621143489848422977
                                    135301852344706746049
                                    218922995834555169026
                                    354224848179261915075
```

It's about 1000x faster even for the 20th Fibonacci number. It turns out that the recursive algorithm is pretty terrible - the time increases exponentially with n .

```
In [5]: @time fastfib(20)
    @time slowfib(20)
0.002777 seconds (164 allocations: 9.711 KB)
    0.010294 seconds (54.73 k allocations: 1.253 MB, 70.13% gc time)
Out[5]: 10946
```


2 Fibonacci as matrices

We can represent the Fibonacci recurrence as repeated multiplication by a 2×2 matrix, since:

$$
\binom{f_{n+1}}{f_{n}}=\underbrace{\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)}_{F}\binom{f_{n}}{f_{n-1}}
$$

```
In [6]: F = [1 1
    1 0]
Out[6]: 2\times2 Array{Int64,2}:
    1 1
    10
```

So, plugging in $f_{1}=1, f_{2}=1$, then

$$
\binom{f_{n+2}}{f_{n+1}}=F^{n}\binom{1}{1}
$$

and the key to understanding F^{n} is the eigenvalues of F :

```
In [7]: eigvals(F)
Out[7]: 2-element Array{Float64,1}:
    -0.618034
        1.61803
```

Analytically, we can easily solve this 2×2 eigenproblem to show that the eigenvalues are $(1 \pm \sqrt{5}) / 2$ (just the roots of the quadratic characteristic polynomial $\left.\operatorname{det}(F-\lambda I)=\lambda^{2}-\lambda-1\right)$:

```
In [8]: (1 + \ \ )/2
Out[8]: 1.618033988749895
In [9]: (1 - \5)/2
Out[9]: -0.6180339887498949
```

For example, to compute f_{100}, we can multiply F^{98} by $(1,1)$ (again converting to BigInt using big first to avoid overflow):

```
In [10]: big(F)^98 * [1, 1]
Out[10]: 2-element Array{BigInt,1}:
    354224848179261915075
    218922995834555169026
```

This matches our fastfib function from above:

```
In [11]: fastfib(100)
```

Out[11]: 354224848179261915075

The key thing about F^{n} is that, for large n, the behavior is dominated by the biggest $|\lambda|$. That is, for large n, we must have $\left(f_{n}, f_{n-1}\right)$ approximately parallel to the corresponding eigenvector, and hence:

$$
\binom{f_{n+1}}{f_{n}}=F\binom{f_{n}}{f_{n-1}} \approx \lambda_{1}\binom{f_{n}}{f_{n-1}}
$$

where $\lambda_{1}=(1+\sqrt{5}) / 2$ is the so-called golden ratio.
Let's compute the ratios of f_{n+1} / f_{n} and show that they approach the golden ratio:
In [12]: (1 + ل $\operatorname{big}(5)) / 2$ \# golden ratio computed to many digits
Out[12]: 1.61803398874989484820458683436563811772030917980576286213544862270526046281891

In [13]: using Interact
@manipulate for $\mathrm{n}=1: 1000$
fastfib(n+1)/fastfib(n)
end
Interact.Options\{:SelectionSlider, Int64\}(Signal\{Int64\}(500, nactions=1), "n",500, "500", Interact.OptionDi

Out[13]: 1.61803398874989484820458683436563811772030917980576286213544862270526046281891
We can also plot the ratio vs. n :
In [14]: using PyPlot
plot(1:10, [fastfib(n+1)/fastfib(n) for $n=1: 10]$, "ro-")
plot $([0,10],(1+\sqrt{5}) / 2 *[1,1], \quad " k--")$
xlabel(L"n")
ylabel(L"f_\{n+1\}/f_n")

Out[14]: PyObject <matplotlib.text.Text object at 0x332cb6510>
Clearly, it converges rapidly as expected!
(In fact, it converges exponentially rapidly, with the error going exponentially to zero with n. We will discuss this in more detail later when discussing the power method.)

