
9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 1/16

1806 (/github/stevengj/1806/tree/spring17) / lectures (/github/stevengj/1806/tree/spring17/lectures)

Graphs and Networks in Linear Algebra
This notebook is based on section 10.1 of Strang's Linear Algebra textbook.

One interesting source of large matrices in linear algebra is a graph (https://en.wikipedia.org/wiki/Graph_(discrete_mathematics), a collection of nodes
(vertices) and edges (arrows from one vertex to another). Graphs are used in many applications to represent relationships and connectivity, such as:

For computer networks, nodes could represent web pages, and edges could represent links.

For circuits, edges could represent wires (or resistors) and nodes junctions.

For transportation, nodes could represent cities and edges roads.

In bioinformatics, graphs can represent gene regulatory networks.

In sociology, nodes could represent people and edges relationships.

... and many, many other applications ...

In this notebook, we explain how a graph can be represented by a matrix, and how linear algebra can tell us properties of the graph and can help us do

computations on graph-based problems. There is a particularly beautiful connection to Kirchhoff's laws of circuit theory.

Packages for this notebook
To run the code in this notebook, you'll need to install a few Julia packages used below. To do so, uncomment the following line and run it:

In [1]: # Pkg.add.(["GraphViz", "RowEchelon", "Interact", "SymPy"])

...and then run this cell to import the packages:

In [2]: using Interact, RowEchelon, Compat
import GraphViz
import SymPy.Sym

Julia Graph-visualization code
There are several Julia packages for manipulating graphs, e.g. LightGraphs (https://github.com/JuliaGraphs/LightGraphs.jl), along with several packages

for visualizing graphs, e.g. GraphViz (https://github.com/Keno/GraphViz.jl). LightGraphs is oriented towards fast and sophisticated graph computations,

however, and here I just want to do some simple and pretty visualizations with simple algorithms based on those in Strang's 18.06 textbook.

So, here I define a simple DiGraph datastructure for directed graphs, oriented towards visualization via the GraphViz package (allowing me to control

colors and other properties easily). 18.06 students can skip over all of this code directly to the results.

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 2/16

In [3]: # A very simple data structure representing a directed graph, with the ability to
label and color the nodes and edges as needed.
const Properties = Dict{Symbol,Any}
immutable DiNode
 label::Any

 props::Properties

 DiNode(label, props::Properties) = new(label, props)

 DiNode(label, props::Pair{Symbol}...) = DiNode(label, Properties(props...))

end
Base.copy(n::DiNode) = DiNode(n.label, copy(n.props))

immutable DiEdge
 e::Pair{Int,Int}

 props::Properties

 DiEdge(e, props::Properties) = new(e, props)

 DiEdge(e, props::Pair{Symbol}...) = DiEdge(e, Properties(props...))

end
Base.copy(e::DiEdge) = DiEdge(e.e, copy(e.props))

type DiGraph
 nodes::Vector{DiNode}

 edges::Vector{DiEdge}

 props::Properties # properties of the whole graph
 function DiGraph(nodes::Vector{DiNode}, edges::Vector{DiEdge}, props::Properties)
 n = length(nodes)

 all(e -> minimum(e.e) ≥ 1 && maximum(e.e) ≤ n, edges) || throw(ArgumentError("edge refers to nonexistent node"

 new(nodes, edges, props)

 end
 DiGraph(nodes::Vector{DiNode}, edges::Vector{DiEdge}, props::Pair{Symbol}...) =

 DiGraph(nodes, edges, Properties(props...))

end
function DiGraph(numnodes::Integer, edges::Pair{Int,Int}...)
 n = Int(numnodes)

 m = length(edges)

 DiGraph([DiNode(i) for i=1:n], [DiEdge(edges[j], :label=>j) for j=1:m])
end
DiGraph(edges::Pair{Int,Int}...) = DiGraph(maximum(e -> maximum(e), edges), edges...)

Base.copy(g::DiGraph) = DiGraph(copy.(g.nodes), copy.(g.edges), copy(g.props))

function nodecolors!(g::DiGraph, nodes::AbstractVector{Int}, color::String="red")
 for n in nodes
 g.nodes[n].props[:color] = color

 g.nodes[n].props[:fontcolor] = color

 end
 g

end
nodecolors(g::DiGraph, nodes::AbstractVector{Int}, color::String="red") = nodecolors!(copy(g), nodes, color)

function edgecolors!(g::DiGraph, edges::AbstractVector{Int}, color::String="red")
 for e in edges
 g.edges[e].props[:color] = color

 g.edges[e].props[:fontcolor] = color

 end
 g

end
edgecolors(g::DiGraph, edges::AbstractVector{Int}, color::String="red") = edgecolors!(copy(g), edges, color)

function edgelen!(g::DiGraph, len::Real=1)
 for e in g.edges
 e.props[:len] = len

 end
 g

end
function labels!(g::DiGraph; edges=nothing, nodes=nothing)
 if edges !== nothing
 for (e,E) in zip(g.edges, edges)
 e.props[:label] = E

 end
 end
 if nodes !== nothing
 for (n,N) in zip(g.nodes, nodes)
 n.props[:label] = N

 end
 end
 g

end
labels(g::DiGraph; kws...) = labels!(copy(g); kws...)

Out[3]: labels (generic function with 1 method)

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 3/16

In [4]: # visualization of DiGraph via GraphViz

function showprop(io, x::String)
 print(io, '"')

 escape_string(io, x, "")

 print(io, '"')

end
showprop(io, x::Number) = print(io, x)

showprop(io, x) = showprop(io, string(x))

GraphViz.Graph(g::DiGraph) = GraphViz.Graph(DOTstring(g))

Base.show(io::IO, m::MIME"image/svg+xml", g::DiGraph) = show(io, m, GraphViz.Graph(g))

convert g to a string in DOT format for use with GraphViz

function DOTstring(g::DiGraph)
 buf = IOBuffer()

 println(buf, "digraph MyDiGraph {")

 for (i,n) in enumerate(g.nodes)
 print(buf, " ", i, " [label=")

 showprop(buf, n.label)

 for (p,v) in n.props
 print(buf, ' ', p, '=')

 showprop(buf, v)

 end
 print(buf, "]\n")
 end
 for (j,e) in enumerate(g.edges)
 print(buf, " ", e.e.first, " -> ", e.e.second, " [")

 for (p,v) in e.props
 print(buf, ' ', p, '=')

 showprop(buf, v)

 end
 print(buf, "]\n")
 end
 println(buf, "}")

 String(take!(buf))

end

In [5]: # generate a random graph with a given average #edges per node

function randgraph(numnodes::Integer, edgespernode::Real)
 p = edgespernode/numnodes # probability of each edge

 e = Vector{Pair{Int,Int}}()

 for i = 1:numnodes, j = 1:numnodes
 if i != j && rand() < p
 push!(e, i=>j)

 end
 end
 return DiGraph(numnodes, e...)
end

In [6]: # returns the incidence matrix for g

function incidence(g::DiGraph)
 A = zeros(Int, length(g.edges), length(g.nodes))

 for (i,e) in enumerate(g.edges)
 A[i,e.e.first] = -1

 A[i,e.e.second] = 1

 end
 return A
end

Out[4]: DOTstring (generic function with 1 method)

Out[5]: randgraph (generic function with 1 method)

Out[6]: incidence (generic function with 1 method)

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 4/16

In [7]: # Find the loops in g by the simplest "textbook" manner:
get a basis for the left nullspace incidence matrix.
We do this via the rref form, rather than nullspace(A'), because
we want a "nice" basis of ±1 and 0 entries.
function leftnullspace(g::DiGraph)
 A = incidence(g)

 R = rref(A')

 m, n = size(R)

 pivots = Int[]

 for i = 1:m
 j = findfirst(R[i,:])

 j > 0 && push!(pivots, j)

 end
 r = length(pivots) # rank
 free = Int[j for j=1:n if j ∉ pivots]
 N = zeros(Int, n, n-r)

 k = 0

 for (k,j) in enumerate(free)
 N[pivots, k] = -R[1:r, j]

 N[j, k] = 1

 end
 return N
end

In [8]: # color the edges of a spanning tree of g, by the textbook
method of finding the pivot rows of the incidence matrix
function pivotrows(g::DiGraph)
 A = incidence(g)

 R = rref(A')

 m, n = size(R)

 pivots = Int[]

 for i = 1:m
 j = findfirst(R[i,:])

 j > 0 && push!(pivots, j)

 end
 return pivots
end
colortree(g::DiGraph, color::String="red") = edgecolors(g, pivotrows(g), color)

tree(g::DiGraph) = DiGraph(copy.(g.nodes), g.edges[pivotrows(g)], copy(g.props))

Graphs and incidence matrices
Let's start by looking at an example graph with 6 nodes 8 edges. Computers are pretty good at drawing graphs for us:

In [9]: g = edgelen!(DiGraph(1=>4, 4=>5, 5=>6, 6=>3, 3=>2, 2=>1, 2=>6, 4=>6), 1.5)

A key way to represent a graph in linear algebra is the incidence matrix (https://en.wikipedia.org/wiki/Incidence_matrix). As defined in Strang's textbook,
this is a matrix where the rows correspond to edges and the columns correspond to nodes. (Some authors use the transpose of this instead.)

In particular, in the row for each edge going from node N to node M, there is a -1 in column N and a +1 in column N.

For example, the incidence matrix of the graph above is:

Out[7]: leftnullspace (generic function with 1 method)

Out[8]: tree (generic function with 1 method)

Out[9]:

1

4

1

2

6

6

7

3
5

52

8 3

4

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 5/16

In [10]: A = incidence(g)

There is an interesting structure if you think about loops in the graph. For example, in the graph above there is a loop among nodes 6, 3, 2, via edges 4,5,7.
Let's look at the rows of corresponding to those edges:

In [11]: A[[4,5,7],:]

If we add these rows we get zero:

In [12]: A[4,:]' + A[5,:]' + A[7,:]'

In general, it is easy to see that any loop in the graph corresponds to dependent rows: if we sum the rows going around the loop (with a minus sign for
arrows in the wrong direction), we get zero.

The reason is simple: we get a -1 in a column when we leave a node, and a +1 in the column when we enter a node. When we go around the loop, we
leave and enter each node, so the sum is zero.

But dependent rows correspond to elements of the left nullspace:

In [13]: [0 0 0 1 1 0 1 0] * A

That means that the number of "independent" (primitive) loops in a graph is related to the rank of the incidence matrix, and the independent rows of A
have no loops.

Let's look at the row-reduced echelon (rref) form of :

In [14]: Matrix{Int}(rref(A'))

We can see that the rank of is 5:

In [15]: rank(A)

This means that there are five loop-free (independent) edges, and there are three (8 - 5) primitive loops. Using the rref form of , we can read off a
basis for the left nullspace from the free columns (6,7,8):

Out[10]: 8×6 Array{Int64,2}:

 -1 0 0 1 0 0

 0 0 0 -1 1 0

 0 0 0 0 -1 1

 0 0 1 0 0 -1

 0 1 -1 0 0 0

 1 -1 0 0 0 0

 0 -1 0 0 0 1

 0 0 0 -1 0 1

Out[11]: 3×6 Array{Int64,2}:

 0 0 1 0 0 -1

 0 1 -1 0 0 0

 0 -1 0 0 0 1

Out[12]: 1×6 Array{Int64,2}:

 0 0 0 0 0 0

Out[13]: 1×6 Array{Int64,2}:

 0 0 0 0 0 0

Out[14]: 6×8 Array{Int64,2}:

 1 0 0 0 0 -1 0 0

 0 1 0 0 0 -1 0 1

 0 0 1 0 0 -1 0 1

 0 0 0 1 0 -1 -1 0

 0 0 0 0 1 -1 -1 0

 0 0 0 0 0 0 0 0

Out[15]: 5

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 6/16

In [16]: N = leftnullspace(g)

In [17]: A' * N

Let's visualize these loops by plotting the edges in a different color (red) one by one, with help from the Interact package to give us an interactive widget:

In [18]: colorloop(g::DiGraph, n::Vector) = edgecolors!(edgecolors(g, find(n .> 0), "red"), find(n .< 0), "blue")

function animloops(g::DiGraph)
 L = leftnullspace(g)

 @manipulate for loop in 1:size(L,2)
 colorloop(g, L[:,loop])

 end
end

In [19]: animloops(g)

These three loops are not the only loops in the graph, but the other loops can be made from combinations of these loops. (Similarly, the columns of
are not the whole left nullspace, they are just a basis for the n nullspace.

For example, the loop between nodes 1-4-6-2 can be made by starting with 1-4-5-6-3-2 and "subtracting" the 6-3-2 loop.

In this sense, a basis for the left nullspace of is a "basis" for the other loops in the graph: we say that they are "primitive" loops.

Out[16]: 8×3 Array{Int64,2}:

 1 0 0

 1 0 -1

 1 0 -1

 1 1 0

 1 1 0

 1 0 0

 0 1 0

 0 0 1

Out[17]: 6×3 Array{Int64,2}:

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

Out[18]: animloops (generic function with 1 method)

Out[19]:

1

4

1

2

6

6

7

3
5

52

8 3

4

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 7/16

In [20]: colorloop(g, N[:,1] - N[:,2]) # subtract two loops to make another loop

It is fun to do the same thing for bigger graphs, chosen at random:

In [21]: gbig = edgelen!(randgraph(15, 1.5), 1.5)

animloops(gbig)

Conversely, the independent rows of (corresponding to the pivot columns of the rref form of) form a maximal set of edges with no loops. A graph
with no loops is called a tree (https://en.wikipedia.org/wiki/Tree_(graph_theory)), and this particular tree is called a spanning tree
(https://en.wikipedia.org/wiki/Spanning_tree) because it touches all of ("spans") the nodes (assuming the graph is connected).

Let's color the spanning tree (loop-free edges) of our example graph red:

Out[20]:

1

4

1

2

6

6

7

3
5

52

8 3

4

Out[21]:

1

6

1

2

11

2
12

3

3

4

5

4

15

6

5 7

7

8

9

10

11

9
12

8

13

14

15

16

1017

18

19

20

13

21

22

14

23

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 8/16

In [22]: colortree(g)

We can also discard all of the edges that are not in the spanning tree, and we are left with a more boring graph of just the spanning tree:

In [23]: tree(g)

We can do the same thing for our bigger random example:

Out[22]:

1

4

1

2

6

6

7

3
5

52

8 3

4

Out[23]:

1

4

1

2

3
5

5

2

6

3

4

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 9/16

In [24]: colortree(gbig)

Out[24]:

1

6

1

2

11

2
12

3

3

4

5

4

15

6

5 7

7

8

9

10

11

9
12

8

13

14

15

16

1017

18

19

20

13

21

22

14

23

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 10/16

In [25]: tree(gbig)

And we can make trees from even larger graphs, for fun:

Out[25]:

1

6

1

2

11

2

12

3

3

4

5

4

15
6

57

78

10

9

12

8

13

10

17

13

21

14

23

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 11/16

In [26]: tree(randgraph(20, 6))

Graphs and Kirchhoff's circuit laws
An elegant application of the incidence matrix and its subspaces arises if we think of the graph as representing an electrical circuit:

Each edge represents a wire/resistor, with an unknown current . The direction of the edge indicates the sign convention (indicates current
flowing in the direction of the arrow).
Each node represents a junction, with an unknown voltage .

Let's visualize this by re-labeling our graph from above. We'll use the SymPy (https://github.com/JuliaPy/SymPy.jl) package to allow us to do symbolic (not
numeric) calculations with the incidence matrix.

In [27]: # A little code so that we can label graph nodes/edges with SymPy expressions.
convert strings like "v_2 - v_0" from SymPy to nicer Unicode strings like "v₂ - v₀"
subchar(d::Integer) = Char(UInt32('₀')+d)

subchar(c::Char) = subchar(UInt32(c)-UInt32('0'))

subchar(s::String) = replace(s, r"_[0-9]", s -> subchar(s[2]))

showprop(io, s::SymPy.Sym) = showprop(io, subchar(stringmime("text/plain", s)))

subchar("v_2 - v_0")

In [28]: labels(g, edges=[Sym("i_$i") for i = 1:size(A,1)], nodes=[Sym("v_$i") for i = 1:size(A,2)])

Kirchhoff's voltage law (KVL)
Let's start doing some linear algebra. What happens if we multiply our incidence matrix by a vector of voltages, one per node?

Out[26]:

1

2

1

5

2

6

3

7

4
11

519 6

3

8

12 11

16

12

17

13

20

14

4

17

18

21

8
23

9

24

10

25

14
26

15

33 13

61

Out[27]: "v₂ - v₀"

Out[28]:

v₁

v₄

i₁

v₂

i₆
v₆

i₇

v₃
i₅

v₅i₂

i₈ i₃

i₄

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 12/16

In [29]: v = [Sym("v_$i") for i = 1:size(A,2)]

In [30]: A

In [31]: A * v

What we get are the voltage difference (and in particular, the voltage rise) across each edge. It is easier to see this if we use the elements of to
directly label the edges of our graph:

In [32]: labels(g, edges=A*v, nodes=v)

Now, let's ask the inverse question: what voltage differences can possibly arise? i.e. what are in ?

Remember, is not full rank: its rank is 5, but there are 8 rows (8 edges). So, is 5-dimensional ("missing" three dimensions). Equivalently is
orthogonal to the left nullspace, which has three rows. What does this mean?

Let's visualize the differences d:

Out[29]:

Out[30]: 8×6 Array{Int64,2}:

 -1 0 0 1 0 0

 0 0 0 -1 1 0

 0 0 0 0 -1 1

 0 0 1 0 0 -1

 0 1 -1 0 0 0

 1 -1 0 0 0 0

 0 -1 0 0 0 1

 0 0 0 -1 0 1

Out[31]:

Out[32]:

v₁

v₄

-v₁ + v₄

v₂

v₁ - v₂
v₆

-v₂ + v₆

v₃v₂ - v₃

v₅
-v₄ + v₅

-v₄ + v₆ -v₅ + v₆

v₃ - v₆

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 13/16

In [33]: d = [Sym("d_$j") for j = 1:size(A,1)]
labels(g, edges=d, nodes=v)

If is a basis for the left nullspace, we must have , or:

In [34]: N' * d

But what is this? Remember, each element of the left nullspace corresponded to a loop in the graph. Saying , or , is equivalent to
saying that the sum of the voltage rises around each loop = 0.

But this is precisely Kirchhoff's voltage law (https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws) from circuit theory!

Kirchhoff's current law (KCL)
To actually solve circuit problems, we need three additional ingredients:

The voltage difference must be divided by a resistance to get the current through that edge: (where is the
"admittance"), by Ohm's law (https://en.wikipedia.org/wiki/Ohm's_law). Note that we need a minus sign to get the current in the direction of the arrow,
since was the the voltage rise across the edge.

The sum of the currents entering each node must be zero, by Kirchhoff's current law (KCL).

To get a nontrivial solution, we need some kind of source: a battery or current source, to start currents flowing.

How do we represent each one of these steps by linear-algebra operations?

Ohm's law

To represent Ohm's law, we need to multiply the voltage differences by a diagonal matrix of admittances:

In [35]: Y = diagm([Sym("Y_$i") for i = 1:size(A,1)])

Out[33]:

v₁

v₄

d₁

v₂

d₆
v₆

d₇

v₃
d₅

v₅d₂

d₈ d₃

d₄

Out[34]:

Out[35]:

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 14/16

In [36]: Y*d

In [37]: Y*A*v

Net current into each node

Given the currents , a little thought shows that the net current flowing into each node is precisely :

In [38]: i = [Sym("i_$j") for j=1:size(A,1)]
A'*i

In [39]: labels(g, edges=i, nodes=A'*i)

Why is this? The reason is that each row corresponds to a node, and has for each edge going into or out of the node, exactly the right sign to sum
the net currents flowing in:

In [40]: A'

Out[36]:

Out[37]:

Out[38]:

Out[39]:

-i₁ + i₆

i₁ - i₂ - i₈

i₁

i₅ - i₆ - i₇

i₆
i₃ - i₄ + i₇ + i₈

i₇

i₄ - i₅
i₅

i₂ - i₃i₂

i₈ i₃

i₄

Out[40]: 6×8 Array{Int64,2}:

 -1 0 0 0 0 1 0 0

 0 0 0 0 1 -1 -1 0

 0 0 0 1 -1 0 0 0

 1 -1 0 0 0 0 0 -1

 0 1 -1 0 0 0 0 0

 0 0 1 -1 0 0 1 1

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 15/16

Putting it together, given voltages , the net current flowing out of each node is

The matrix is a very special and important kind of matrix. It is obviously symmetric, and later on in the course we will see that any matrix of this
form is necessarily positive semidefinite (all pivots are ≥ 0). Many important matrices in science, engineering, statistics, and other fields take on this
special form.

If we multiply together, not all of its specialness is apparent. It is often better to leave it in "factored" form:

In [41]: A' * Y * A

Null space

If we just say that the net current flowing out of each node is zero, we get the equation:

or .

It is an amazing and important fact that !! (You saw a version of this in homework.) Why is this? Clearly, if then . But
what about the converse? Here is a trick: if , then . Let . It is easy to see that only
if , since all of the admittances are positive. (We will later say that is a "positive-definite matrix".) This means that implies that

, which implies that .

What is ? The rank of is 5, so must be 1-dimensional. A basis for it is:

In [42]: nullspace(A)

But this is, of course, just the space of vectors where all voltages are equal. In hindsight, this should be obvious: if all the voltages are equal, then their
difference are zero, and the currents are zero, and KCL is satisfied.

Current sources
Of course, it is much more interesting to think about circuits when the currents are nonzero!

To do this, we must consider a source term in the equations, and in particular we could try to solve

for some . What does represent? It is precisely an external source of current flowing out of each node.

For this to have a solution, however, we must have (since is symmetric, the left and right
nullspaces are equal). We know a basis for from above, so this boils down to:

That is, to have a solution, all current that flows in must flow out, so that the net current flowing into the circuit is zero. This makes a lot of physical
sense!

Just for fun, let's solve this circuit problem when the current is flowing into node 2 and out through node 1, with slider controls for the 8 admittances, and
label the edges with the currents.

In [43]: twodigits(x) = round(x, 2)

Out[41]:

Out[42]: 6×1 Array{Float64,2}:

 0.408248

 0.408248

 0.408248

 0.408248

 0.408248

 0.408248

Out[43]: twodigits (generic function with 1 method)

9/7/2017 Jupyter Notebook Viewer

http://nbviewer.jupyter.org/github/stevengj/1806/blob/spring17/lectures/Graphs-Networks.ipynb 16/16

In [44]: @manipulate for Y₁=0.1:0.1:10,
 Y₂=0.1:0.1:10,

 Y₃=0.1:0.1:10,

 Y₄=0.1:0.1:10,

 Y₅=0.1:0.1:10,

 Y₆=0.1:0.1:10,

 Y₇=0.1:0.1:10,

 Y₈=0.1:0.1:10

 s = [1,-1,0,0,0,0]

 Y = diagm([Y₁,Y₂,Y₃,Y₄,Y₅,Y₆,Y₇,Y₈])

 nodecolors!(labels(g, edges=[subchar("i_$j = $i") for (j,i) in enumerate(twodigits.(Y*A*(pinv(A'*Y*A) * s)))]),
 [1,2])

end

Notice that if we make the admittance really large compared to all of the other admittances, then nearly all of the current should flow just over that one
edge. Conversely, if we make really small, it is almost like "cutting" that wire: almost all of the current should flow through the other edges.

Hooray, math (and physics) works!

Sparsity
The case of matrices arising from graphs illustrates another point that I've made many times: really large matrices are often sparse (mostly 0) in
practice.

For example, imagine a circuit with a million nodes. For the most part, there will only be wires between nearby nodes. Or imagine a graph where the nodes
are websites and the edges are links: there are billions of sites, but each site only links to a few other sites (a few hundred at most, usually). In such cases,
the incidence matrix is mostly zero, and similarly for etcetetera.

This is hugely important, because solving and most other matrix equations scale as for matrices. matrices are easy (< 1
second), but would require supercomputers, and would be impossibly hard. What saves us is that there are much faster algorithms for
sparse matrices. We won't learn much about such algorithms in 18.06, but the key point is to know that they exist.

If you encounter a large sparse matrix problem in the future, go read about sparse matrix algorithms!

Out[44]:

1

4

i₁ = -0.3

2

i₆ = 0.7

6

i₇ = 0.2

3i₅ = -0.1

5
i₂ = -0.1

i₈ = -0.2 i₃ = -0.1

i₄ = -0.1

