
Inverses-Complexity-Transposes

September 7, 2017

1 Matrix inverses

It is often conceptually convenient to talk about the inverse A−1 of a matrix A, which exists for any non-
singular square matrix. This is the matrix such that x = A−1b solves Ax = b for any b. The inverse
is conceptually convenient becuase it allows us to move matrices around in equations almost like numbers
(except that matrices don’t commute!).

Another way of defining the inverse of a matrix involves the identity matrix I. Here is a $ 5
×5$identitymatrix :

I =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =
(
e1 e2 e3 e4 e5

)

where the columns e1 · · · e5 of I are the unit vectors in each component.
The identity matrix, which can be constructed by eye(5) in Julia, has the property that Ix = x for any

x, and hence IA = A for any (here 5× 5) matrix A:

In [1]: A = [4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6] # a randomly chosen 5x5 matrix

Out[1]: 5×5 Array{Int64,2}:
4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6

In [2]: b = [-7,2,4,-4,-7] # a randomly chosen right-hand side

Out[2]: 5-element Array{Int64,1}:
-7

2

4

-4

-7

In [3]: I5 = eye(Int, 5)

Out[3]: 5×5 Array{Int64,2}:
1 0 0 0 0

1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

In [4]: I5 * b == b

Out[4]: true

In [5]: I5 * A == A

Out[5]: true

The inverse matrix A−1 is the matrix such that A−1A = AA−1 = I.
Why does this correspond to solving Ax = b? Multiplying both sides on the left by A−1 (multiplying on

the right would make no sense: we can’t multiply vector×matrix!), we get

A−1Ax = Ix = x = A−1b

How do we find A−1? The key is the equation AA−1 = I, which looks just like AX = B for the right-
hand sides consisting of the columns of the identity matrix, i.e. the unit vectors. So, we just solve
Ax = ei for i = 1, . . . , 5, or equivalently do A \ I in Julia. Of course, Julia comes with a built-in function
inv(A) for computing A−1 as well:

In [6]: Ainv = A \ I5

Out[6]: 5×5 Array{Float64,2}:
0.0109991 0.529789 -0.908341 -0.635197 -0.0879927

0.131989 0.35747 -0.900092 -0.622365 -0.055912

-0.235564 -0.179652 0.370302 0.353804 -0.11549

-0.301558 -0.69172 1.48701 1.16499 0.0791323

0.2044 0.678582 -1.29667 -1.05408 0.0314696

In [9]: Ainv - inv(A)

Out[9]: 5×5 Array{Float64,2}:
2.10942e-15 2.44249e-15 -2.88658e-15 -2.66454e-15 4.996e-16

1.88738e-15 2.77556e-15 -3.21965e-15 -2.55351e-15 5.27356e-16

-8.04912e-16 -9.99201e-16 1.88738e-15 1.11022e-15 -1.94289e-16

-3.83027e-15 -4.32987e-15 5.9952e-15 5.55112e-15 -7.63278e-16

3.16414e-15 3.66374e-15 -5.32907e-15 -4.44089e-15 6.73073e-16

(The difference is just roundoff errors.)

In [10]: Ainv * A

Out[10]: 5×5 Array{Float64,2}:
1.0 -8.32667e-15 -1.49325e-14 -4.88498e-15 -1.0103e-14

1.46549e-14 1.0 -1.82077e-14 -2.22045e-15 -1.15463e-14

-6.02296e-15 -1.77636e-15 1.0 -1.11022e-15 5.55112e-15

-1.58068e-14 1.4877e-14 2.36478e-14 1.0 1.4877e-14

1.38639e-14 -7.68829e-15 -2.05808e-14 -5.77316e-15 1.0

(Again, we get I up to roundoff errors because the computer does arithmetic only to 15–16 significant
digits.)

In [11]: A * Ainv

2

Out[11]: 5×5 Array{Float64,2}:
1.0 8.88178e-16 0.0 0.0 -5.55112e-17

4.44089e-16 1.0 0.0 -8.88178e-16 0.0

1.72085e-15 -4.21885e-15 1.0 -4.88498e-15 -1.08247e-15

-4.44089e-15 2.66454e-15 5.32907e-15 1.0 7.77156e-16

-3.10862e-15 8.88178e-16 -1.77636e-15 5.32907e-15 1.0

Normally, AB 6= BA for two matrices A and B. Why can we multiply A by A−1 on either the left or
right and get the same answer I? It is fairly easy to see why:

AA−1 = I =⇒ AA−1A = IA = A = A(A−1A)

Since A(A−1A) = A, and A is non-singular (so there is a unique solution to this system of equations),
we must have A−1A = I.

In [12]: [A\b Ainv*b] # print the two results side-by-side

Out[12]: 5×2 Array{Float64,2}:
0.505958 0.505958

-0.928506 -0.928506

2.16407 2.16407

1.46166 1.46166

-1.26428 -1.26428

Matrix inverses are funny, however:

• Inverse matrices are very convenient in analytical manipulations, because they allow you to move
matrices from one side to the other of equations easily.

• Inverse matrices are almost never computed in “serious” numerical calculations. Whenever you
see A−1B (or A−1b), when you go to implement it on a computer you should read A−1B as “solve
AX = B by some method.” e.g. solve it by A \ B or by first computing the LU factorization of A and
then using it to solve AX = B.

One reason that you don’t usually compute inverse matrices is that it is wasteful: once you have PA = LU ,
you can solve AX = B directly without bothering to find A−1, and computing A−1 requires much more
work if you only have to solve a few right-hand sides.

Another reason is that for many special matrices, there are ways to solve AX = B much more quickly
than you can find A−1. For example, many large matrices in practice are sparse (mostly zero), and often
for sparse matrices you can arrange for L and U to be sparse too. Sparse matrices are much more efficient
to work with than general “dense” matrices because you don’t have to multiply (or even store) the zeros.
Even if A is sparse, however, A−1 is usually non-sparse, so you lose the special efficiency of sparsity if you
compute the inverse matrix.

1.1 Inverses and products

Inverses have a special relationship to matrix products:

(AB)−1 = B−1A−1

The reason for this is that we must have (AB)−1AB = I, and it is easy to see that B−1A−1 does the
trick. Equivalently, AB is the matrix that first multiplies by B then by A; to invert this, we must reverse
the steps: first multiply by the inverse of A and then by the inverse of B.

In [13]: C = rand(4,4)

D = rand(4,4)

inv(C*D)

3

https://en.wikipedia.org/wiki/Sparse_matrix

Out[13]: 4×4 Array{Float64,2}:
28.482 87.1709 -18.1513 -69.049

5.24037 29.3791 -1.7985 -23.1166

-57.428 -213.578 29.3019 173.441

19.704 67.9954 -8.59925 -57.3863

In [14]: inv(D)*inv(C)

Out[14]: 4×4 Array{Float64,2}:
28.482 87.1709 -18.1513 -69.049

5.24037 29.3791 -1.7985 -23.1166

-57.428 -213.578 29.3019 173.441

19.704 67.9954 -8.59925 -57.3863

2 Complexity of Matrix Operations

With a little effort, we can figure out that the number of arithmetic operations for an n × n matrix
scales proportional to (for large n):

• n2 for: matrix * vector Ax, or solving a triangular system like Ux = c or Lc = b (back/forward
substitution)

• n3 for: matrix * matrix AB, LU factorization PA = LU , or solving a triangular system with n
right-hand sides like computing A−1 from the LU factorization.

(In computer science, we would say that these have “complexity” Θ(n2) and Θ(n3), respectively.
Let’s see how these predictions match up to reality:

In [15]: Pkg.add("BenchmarkTools") # a useful package for benchmarking

using BenchmarkTools

INFO: Nothing to be doneINFO: METADATA is out-of-date | you may not have the latest version of BenchmarkToolsINFO: Use ‘Pkg.update()‘ to get the latest versions of your packages

Measure the time for LU factorization of 10×10, 100×100, 500×500, 1000×1000, and 2000×2000 random
real (double precision) matrices:

In [16]: n = [10,100,500,1000,2000]

t = [@belapsed(lufact($(rand(n,n))), evals=1) for n in n]

Out[16]: 5-element Array{Float64,1}:
1.048e-6

0.000157875

0.00277716

0.0110866

0.0571334

Now let’s plot it on a log–log scale to see if it is the expected n3 power law:

In [17]: using PyPlot

loglog(n, t*1e9, "bo-")

loglog(n, n.^3, "k--")

xlabel("matrix size n")

ylabel("time (ns)")

legend(["time", L"n^3"])

title("time for LU factorization")

4

Out[17]: PyObject <matplotlib.text.Text object at 0x324a91ad0>

It’s pretty close! For large n, you can see it starting to go parallel to the n3 line.
The reason it is initially better than n3 (i.e. it is faster than the n3 dependence would suggest) is probably

that there are computational tricks that one can do for large matrices that don’t work for small matrices.
e.g. for large matrices the code is probably using multiple cores (multiple processors) on my laptop, but for
small matrices the problem is too small to exploit parallelism.

Let’s also look at the time to solve LUx = b when we are given the LU factors, which we predict should
grow ∼ n2:

In [18]: ts = [@belapsed($(lufact(rand(n,n))) \ $(rand(n))) for n in n]

Out[18]: 5-element Array{Float64,1}:
3.25424e-7

0.000174126

0.000993936

0.00215818

0.00535709

In [19]: loglog(n, t*1e9, "bo-")

loglog(n, n.^2, "k--")

xlabel("matrix size n")

ylabel("time (ns)")

legend(["time", L"n^2"])

title("time for LU solve")

5

Out[19]: PyObject <matplotlib.text.Text object at 0x32777bd90>

Yup, it’s pretty close to the n2 growth! The key point is that, unless you have many (& n) right-hand sides,
most of the effort is spent in Gaussian elimination (finding L and U), not in the back/forward-substitution
to solve LUx = b.

If we believe this scaling, how long would it take for my laptop to solve a 106× 106 system of equations?

In [20]: Dates.CompoundPeriod(Dates.Second(round(Int,t[end] * (1e6/2000)^3)))

Out[20]: 11 weeks, 5 days, 15 hours, 47 minutes, 50 seconds

In fact, we usually run out of memory before we run out of time:

In [21]: println((1e6)^2 * sizeof(Float64) / 2^30, " GiB for a 106×106 matrix")

7450.580596923828 GiB for a 106×106 matrix

In practice, people do regularly solve problems this large, and even larger, but they can do so because real
matrices that big almost always have some special structure that allows you to solve them more quickly
and store them more compactly. For example, a common special structure is sparsity: matrices whose entries
are mostly zero. We will learn some basic ways to take advantage of this later in 18.06, and sparse-matrix
methods are covered more extensively in 18.335.

6

https://en.wikipedia.org/wiki/Sparse_matrix

3 Transpose, Permutations, and Orthogonality

One special type of matrix for which we can solve problems much more quickly is a permutation matrix,
introduced in the previous lecture on PA = LU factorization.

In [22]: # construct a permutation matrix P from the permutation vector p

function permutation_matrix(p)

P = zeros(Int, length(p),length(p))

for i = 1:length(p)

P[i,p[i]] = 1

end

return P

end

Out[22]: permutation matrix (generic function with 1 method)

In [23]: P = permutation_matrix([2,4,1,5,3])

Out[23]: 5×5 Array{Int64,2}:
0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

In [24]: P * I5

Out[24]: 5×5 Array{Int64,2}:
0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

The inverse of any permutation matrix P turns out to be its transpose PT : we just swap rows and
columns. In Julia, this is denoted P (technically, this is the conjugate transpose, and P. is the transpose,
but the two are the same for real-number matrices where complex conjugation does nothing).

In [25]: P’

Out[25]: 5×5 Array{Int64,2}:
0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

In [26]: P’*P

Out[26]: 5×5 Array{Int64,2}:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

In [27]: P*P’

7

https://en.wikipedia.org/wiki/Transpose

Out[27]: 5×5 Array{Int64,2}:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The reason this works is that PTP computes the dot products of all the columns of P with all of the
columns, and the columns of P are orthonormal (orthogonal with length 1). We say that P is an example of
an “orthogonal” matrix or a “unitary” matrix. We will have much to say about such matrices later in 18.06.

3.1 Transposes and products

Transposes are important in linear algebra because they have a special relationship to matrix and vector
products:

(AB)T = BTAT

and hence for a dot product (inner product) xT y

x dot (Ay) = xT (Ay) = (ATx)T y = (ATx) dot y

We can even turn the second step around and use this as the definition of a transpose: a transpose is what
“moves” a matrix from one side to the other of a dot product.

In [29]: C = rand(-9:9, 4,4)

D = rand(-9:9, 4,4)

(C*D)’ == D’*C’

Out[29]: true

3.2 Transposes and inverses

From the above property, we have:

(AA−1)T = (A−1)TAT = IT = I

and it follows that:
(A−1)T = (AT)−1

The transpose of the inverse is the inverse of the transpose.

In [30]: inv(A’)

Out[30]: 5×5 Array{Float64,2}:
0.0109991 0.131989 -0.235564 -0.301558 0.2044

0.529789 0.35747 -0.179652 -0.69172 0.678582

-0.908341 -0.900092 0.370302 1.48701 -1.29667

-0.635197 -0.622365 0.353804 1.16499 -1.05408

-0.0879927 -0.055912 -0.11549 0.0791323 0.0314696

In [31]: inv(A)’

Out[31]: 5×5 Array{Float64,2}:
0.0109991 0.131989 -0.235564 -0.301558 0.2044

0.529789 0.35747 -0.179652 -0.69172 0.678582

-0.908341 -0.900092 0.370302 1.48701 -1.29667

-0.635197 -0.622365 0.353804 1.16499 -1.05408

-0.0879927 -0.055912 -0.11549 0.0791323 0.0314696

As expected, they match!

8

https://en.wikipedia.org/wiki/Orthonormality
https://en.wikipedia.org/wiki/Unitary_matrix

4 Transposes and LU factors

If A = LU , then AT = UTLT . Note that UT is lower triangular, and LT is upper trangular. That means,
that once we have the LU factorization of A, we immediately have a similar factorization of AT .

9

