
LU-and-Inverses

September 7, 2017

1 Whence cometh the L in LU?

Last time, we constructed the LU factorization by what may have seemed like a laborious procedure. Getting
U was “easy”, it was just Gaussian elimination. But to get L, we first wrote out the individual elimination
steps as matrices, then inverted them to move them to the other side, then multiplied them together to get
L.

However, it turns out that we can just “read off” L much more simply directly from the pivot-row
“multipliers” that we use during elimination steps. To see this, let’s first write a Julia function to perform
Gaussian elimination (without row swaps!) and print out all of the steps, adapting our function from pset 1:

In [1]: # perform Gaussian elimination of A without row swaps, returning U,

while printing a message for each elimination step.

function print_gauss(A)

m = size(A,1) # number of rows

U = copy!(similar(A, typeof(inv(A[1,1]))), A)

for j = 1:m # loop over m columns

for i = j+1:m # loop over rows below the pivot row j

subtract a multiple of the pivot row (j)

from the current row (i) to cancel U[i,j] = U[U+1D62][U+2C7C]:

`[U+1D62][U+2C7C] = U[i,j]/U[j,j]

println("subtracting $`[U+1D62][U+2C7C] × (row $j) from (row $i)")

U[i,:] = U[i,:] - U[j,:] * `[U+1D62][U+2C7C]
U[i,j] = 0 # store exact zero to compensate for roundoff errors

end

end

return U

end

Out[1]: print gauss (generic function with 1 method)

Now, let’s try it on a randomly chosen 5× 5 matrix A:

In [2]: A = [4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6]

Out[2]: 5×5 Array{Int64,2}:
4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6

1

In [3]: print_gauss(A)

subtracting 2.25 × (row 1) from (row 2)

subtracting -0.5 × (row 1) from (row 3)

subtracting 2.25 × (row 1) from (row 4)

subtracting -0.25 × (row 1) from (row 5)

subtracting 6.666666666666667 × (row 2) from (row 3)

subtracting -7.666666666666667 × (row 2) from (row 4)

subtracting -3.6666666666666665 × (row 2) from (row 5)

subtracting -1.2442748091603053 × (row 3) from (row 4)

subtracting -0.4732824427480916 × (row 3) from (row 5)

subtracting 33.495145631067295 × (row 4) from (row 5)

Out[3]: 5×5 Array{Float64,2}:
4.0 -2.0 -7.0 -4.0 -8.0

0.0 -1.5 9.75 8.0 13.0

0.0 0.0 -65.5 -60.3333 -88.6667

0.0 0.0 0.0 0.262087 -0.659033

0.0 0.0 0.0 0.0 31.7767

In comparison, here is the LU factorization of A from the built-in lu function, with row-swaps disabled:

In [4]: L, U = lu(A, Val{false})

U

Out[4]: 5×5 Array{Float64,2}:
4.0 -2.0 -7.0 -4.0 -8.0

0.0 -1.5 9.75 8.0 13.0

0.0 0.0 -65.5 -60.3333 -88.6667

0.0 0.0 0.0 0.262087 -0.659033

0.0 0.0 0.0 0.0 31.7767

Same U matrix! Now let’s look at L:

In [5]: L

Out[5]: 5×5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0

2.25 1.0 0.0 0.0 0.0

-0.5 6.66667 1.0 0.0 0.0

2.25 -7.66667 -1.24427 1.0 0.0

-0.25 -3.66667 -0.473282 33.4951 1.0

Notice that the entries of L below the diagonal are exactly the multipliers that were printed out during
Gaussian elimination (the factors by which the pivot row is multiplied before it is subtracted from a row
below it).

One way to see this is to consider the matrix product LU , which should give A. Consider, for example,
the third row of this: the third row of L tells us what linear combinations of the rows of U gives the third
row of A. It says:

• third row of A = [-2,-9,3,-5,2] = -0.5 × (row 1 of U) + 6.66. . . × (row 2 of U) + (row 3 of U)

In [6]: L[3,1] * U[1,:] + L[3,2] * U[2,:] + U[3,:]

Out[6]: 5-element Array{Float64,1}:
-2.0

-9.0

3.0

-5.0

2.0

2

But this is exactly the reverse of the elimination steps, so of course it works. Putting the multipliers
in L is the right thing!

See section 2.6 of the textbook for more info.
Still, computing the L in the LU factorization requires care to put all of the multipliers in the right place

with the right sign. It is a pain for human beings, which is why we typically don’t do it when performing
Gaussian elimination by hand. However, computers are great at this kind of tedious bookkeeping, and since
keeping track of L requires almost no extra work, computers essentially always figure out both L and U when
doing Gaussian elimination.

2 Using LU factorizations

Lots of things that you might want to do with a matrix A become easier once you have the A = LU
factorization. Most importantly, it becomes much easier to solve systems of equations.

(Exactly how much easier is something we’ll quantify later. Short answer: for an n×n matrix A, it takes
around n3 operations to perform Gaussian elimination to get U and L, but subsequently solving for x by
takes only around n2 operations.)

2.1 Solving Ax=b

When we do Gaussian elimination by hand, we convert Ax = b to Ux = c by performing the same elimination
steps on b to get c as we performed on A to get U . Often, we do this by “augmenting” the matrix A with
the right-hand side b. This makes it easier (for hand calculation) to keep track of what operations to do on
b. For example:

In [7]: b = rand(-9:9, 5)

Out[7]: 5-element Array{Int64,1}:
-7

2

4

-4

-7

In [8]: _, U_and_c = lu([A b], Val{false}) # eliminate augmented matrix (without row swaps)

U = UpperTriangular(U_and_c[:, 1:end-1]) # all but last column is U

c = U_and_c[:, end] # last column is c

Out[8]: 5-element Array{Float64,1}:
-7.0

17.75

-117.833

1.21628

-40.1748

Then we can solve Ux = c by backsubstitution (U \ c), and it should give the same answer (up to
roundoff error) as A \ b:

In [9]: [U\c A\b] # print them side by side

Out[9]: 5×2 Array{Float64,2}:
0.505958 0.505958

-0.928506 -0.928506

2.16407 2.16407

1.46166 1.46166

-1.26428 -1.26428

3

However, the computer doesn’t do this: on a computer, you almost never augment the matrix with
the right-hand-side. Instead, you:

1. Factor A = LU by Gaussian elimination (not including row swaps, discussed below!), giving Ax =
b =⇒ LUx = L(Ux) = b

2. Let c = Ux. Solve Lc = b for c by forward-substitution.
3. Solve Ux = c for x by backsubstitution.

The key point to realize is that solving Lc = b for c involves exactly the same elimination steps as if
you had augmented the matrix with b during Gaussian elimination. The bookkeeping is more tedious for a
human, but computers are good at bookkeeping, and there turn out to be several practical advantages for
computer software to separate solving for LU and solving for c.

In [10]: L, U = lu(A, Val{false}) # Gaussian elimination without row swaps

c = L \ b # solve Lc = b for c

Out[10]: 5-element Array{Float64,1}:
-7.0

17.75

-117.833

1.21628

-40.1748

Same c as before!
Let’s write a little program to write out the steps of forward-substitution so that we can see that they

are indeed the elimination steps from before:

In [11]: c = similar(b, Float64)

for i = 1:length(b)

print("c[$i] = b[$i]")

c[i] = b[i]

for j = 1:i-1

print("- $(L[i,j]) * c[$j]")

c[i] = c[i] - L[i,j] * c[j]

end

println(" = ", c[i])

end

c

c[1] = b[1] = -7.0

c[2] = b[2]- 2.25 * c[1] = 17.75

c[3] = b[3]- -0.5 * c[1]- 6.666666666666666 * c[2] = -117.83333333333333

c[4] = b[4]- 2.25 * c[1]- -7.666666666666666 * c[2]- -1.2442748091603053 * c[3] = 1.2162849872773336

c[5] = b[5]- -0.25 * c[1]- -3.6666666666666665 * c[2]- -0.47328244274809156 * c[3]- 33.495145631067324 * c[4] = -40.17475728155195

Out[11]: 5-element Array{Float64,1}:
-7.0

17.75

-117.833

1.21628

-40.1748

In Julia, A \ b does this whole process for you implicitly.

4

2.2 Multiple right-hand sides and AX = B

Suppose that we need to solve Ax = b for multiple right-hand sides b1, b2, and so on. Once we have
computed A = LU by Gaussian elimination, we can re-use L and U to solve each new right-hand side:

1. Find A = LU by Gaussian elimination
2. Solve Ax1 = b1 by x1 = U \ (L \ b1)

3. Solve Ax1 = b2 by x2 = U \ (L \ b2)

4. etcetera

Since solving triangular systems of equations (L or U) is easy, this way we only do the hard/expensive
part (Gaussian elimination once).

Julia provides a shorthand for this process, so you don’t have to worry about L and U and explicit for-
ward/backsubstitution. Instead, you compute LU = lufact(A), which creates an “LU factorization object”
LU that internally stores L and U in a compressed format (along with any permutations/row swaps as dis-
cussed below), and then you can do LU \ b for each new right-hand side and it will do the (fast) triangular
solves:

In [12]: LU = lufact(A)

Out[12]: Base.LinAlg.LU{Float64,Array{Float64,2}}([4.0 -2.0 ... -4.0 -8.0; 2.25 -1.5 ... 8.0 13.0; ... ; 2.25 -7.66667 ... 0.262087 -0.659033; -0.25 -3.66667 ... 33.4951 31.7767],[1,2,3,4,5],0)

In [13]: [LU\b A\b] # print them side by side

Out[13]: 5×2 Array{Float64,2}:
0.505958 0.505958

-0.928506 -0.928506

2.16407 2.16407

1.46166 1.46166

-1.26428 -1.26428

Equivalently, if we let B = (b1 b2 · · ·) be the matrix whose columns are the right-hand sides, and
X = (x1 x2 · · ·) be the matrix whose columns are the solutions, then solving Ax1 = b1, Ax2 = b2, . . . is
equivalent to solving AX = B, because AX = (Ax1 Ax2 · · ·) in the “matrix × columns” picture of matrix
multiplication:

In [14]: b1 = rand(-9:9, 5)

b2 = rand(-9:9, 5)

x1 = A \ b1

x2 = A \ b2

[x1 x2] # print results side by side

Out[14]: 5×2 Array{Float64,2}:
-0.87626 -8.72869

-0.515124 -6.74427

2.09991 1.8561

1.6908 12.2282

-2.61717 -11.2915

In [15]: B = [b1 b2]

A \ B

Out[15]: 5×2 Array{Float64,2}:
-0.87626 -8.72869

-0.515124 -6.74427

2.09991 1.8561

1.6908 12.2282

-2.61717 -11.2915

5

It gives the same answer! On a computer, solving for a bunch of right-hand sides at once by A \ B is
often more efficient than solving them one by one (for technical reasons involving the speed of memory
access). Conceptually, it is often convenient to think of many right-hand sides and solutions together, in a
matrix, rather than separately.

3 Row swaps and PA = LU

Up to now, we have mostly ignored the possibility of row swaps. Row swaps may be required if you encounter
a zero pivot (assuming there is a nonzero value below it in the same column), but this is often unlikely to
occur in practice (especially for random matrices!).

However, even as in the example above where no row swaps were required, a computer will often do them
anyway, in order to minimize roundoff errors. As you saw on pset 1, roundoff errors (the computer only
keeps about 15–16 significant digits) can be disastrous if the pivot is merely very small. So, the computer
swaps rows to make the pivot as big as possible, as strategy called partial pivoting. As a result, the lu

function in Julia returns three things: L, U , and the permutation p giving the re-ordering of the rows of
A that is needed. For example:

In [16]: L, U, p = lu(A)

L

Out[16]: 5×5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0 0.0

0.444444 0.0512821 1.0 0.0 0.0

-0.111111 0.410256 0.582822 1.0 0.0

-0.222222 -0.794872 0.171779 0.0242696 1.0

In [17]: U

Out[17]: 5×5 Array{Float64,2}:
9.0 -6.0 -6.0 -1.0 -5.0

0.0 13.0 -3.0 6.0 -3.0

0.0 0.0 -4.17949 -3.86325 -5.62393

0.0 0.0 0.0 8.67894 9.95297

0.0 0.0 0.0 0.0 -0.771206

In [18]: p

Out[18]: 5-element Array{Int64,1}:
2

4

1

5

3

p says tells you in what order we should put the rows of A to match the product LU : we should re-order
A to put row 2 first, then row 4, then row 1, then row 5, then row 3. We can do this in Julia easily by:

In [19]: A[p,:] # A with the rows in order p

Out[19]: 5×5 Array{Int64,2}:
9 -6 -6 -1 -5

9 7 -9 5 -8

4 -2 -7 -4 -8

-1 6 -3 9 6

-2 -9 3 -5 2

6

This should match LU :

In [20]: L*U

Out[20]: 5×5 Array{Float64,2}:
9.0 -6.0 -6.0 -1.0 -5.0

9.0 7.0 -9.0 5.0 -8.0

4.0 -2.0 -7.0 -4.0 -8.0

-1.0 6.0 -3.0 9.0 6.0

-2.0 -9.0 3.0 -5.0 2.0

The computer only stores a list of numbers for p because that is the most efficient way to store and
work with the permutation. However, for algebraic manipulations it is often convenient to think of this as
a permutation matrix P multiplying A. Since P re-orders the rows of A, it must multiply A on the left.
Constructing P is easy: it just has a single 1 in each row indicating what row of A should go there.

In [21]: # construct a permutation matrix P from the permutation vector p

function permutation_matrix(p)

P = zeros(Int, length(p),length(p))

for i = 1:length(p)

P[i,p[i]] = 1

end

return P

end

Out[21]: permutation matrix (generic function with 1 method)

In [22]: P = permutation_matrix(p)

Out[22]: 5×5 Array{Int64,2}:
0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

In [23]: P * A == A[p, :]

Out[23]: true

Thus, LU factorization with row swaps corresponds to a factorization

PA = LU

Now, to solve Ax = b, a more complete process is:

1. Factor PA = LU
2. Multiply P by both sides to give PAx = LUx = Pb
3. Let c = Ux and solve Lc = Pb for c by forward-substitution
4. Solve Ux = c for x by backsubstitution.

Of course, Julia does all of this for you automatically with A \ b or lufact(A) \ b, but we can do it
manually:

In [24]: c = L \ b[p] # solve Lc = Pb = b[p]

x = U \ c # solve Ux = c

7

Out[24]: 5-element Array{Float64,1}:
0.505958

-0.928506

2.16407

1.46166

-1.26428

In [25]: A \ b

Out[25]: 5-element Array{Float64,1}:
0.505958

-0.928506

2.16407

1.46166

-1.26428

Hooray, this is the same answer as above!
One final point often confuses people here, if you think carefully about the above process. By writing

PA = LU , it seems like you first decide on the row-reordering of A, and then compute the LU factorization
of PA. But how do you know the proper row-reordering before you do elimination? In fact, this is an illusion:
the computer figures out the row-reordering as it goes along (partial pivoting as described above), but it
then cleverly works backwards to figure out what reordering it should have done in the beginning!

4 Singular matrices

If we encounter a zero pivot (or even just a small pivot, on a computer) during Gaussian elimination, we
normally swap rows to bring a nonzero pivot up from a subsequent row. However, what if there are no
nonzero values below the pivot in that column? This is called a singular matrix: we can still proceed with
Gaussian elimination, but we can’t get rid of the zero pivot.

If you have Ax = b where A is singular, then there will typically (for most right-hand sides b) be no
solutions, but there will occasionally (for very special b) be infinitely many solutions. (For 2×2 matrices,
solving Ax = b corresponds to finding the intersection of two lines, and a singular case corresponds to two
parallel lines — either there are no intersections, or they intersect everywhere.)

For example, consider the following 4× 4 matrix A = LU :
2 −1 0 3
4 −1 1 8
6 1 4 15
2 −1 0 0

︸ ︷︷ ︸

A

=

1 0 0 0
2 1 0 0
3 4 1 0
1 0 2 1

︸ ︷︷ ︸

L

2 −1 0 3
0 1 1 2
0 0 0 −2
0 0 0 1

︸ ︷︷ ︸

U

The third pivot in U is zero! Now, suppose we want to solve Ax = b. We first solve Lc = b to
apply the elimination steps to b. This is no problem since L has 1’s along the diagonal. Suppose we get
c = (c1, c2, c3, c4). Then we proceed by backsubstitution to solve Ux = c, starting with the last row of U :

1× x4 = c4 =⇒ x4 = c40× x3 − 2× x4 = c3 =⇒ no solution unless − 2x4 = −2c4 = c3

For very special right-hand sides, where c3 = 2c4, we can plug in any x3 and get a solution (infinitely many
solutions). Otherwise, we get no solutions.

In [26]: [1 0 0 0

2 1 0 0

3 4 1 0

1 0 2 1] *

[2 -1 0 3

8

https://en.wikipedia.org/wiki/Invertible_matrix

0 1 1 2

0 0 0 -2

0 0 0 1]

Out[26]: 4×4 Array{Int64,2}:
2 -1 0 3

4 -1 1 8

6 1 4 15

2 -1 0 0

You may think that singular cases are not very interesting. In reality, exactly singular square matrices
never occur by accident. There is always some deep structure of the underlying problem that causes the
singularity, and understanding this structure is always interesting.

On the other hand, nearly singular matrices (where the pivots are nonzero but very small) can occur
by accident, and dealing with them is often a delicate problem because they are very sensitive to roundoff
errors. (We call these matrices ill-conditioned.) But that’s mostly not a topic for 18.06.

Singular non-square systems, where you have more equations than unknowns are very common
and important, and lead to fitting problems where one minimizes the error in the solution. We will talk
more about this later in 18.06.

Some matrices are more singular than others. For example, they can have two zero pivots:
2 −1 0 3
4 −2 1 8
6 3 4 15
2 −1 0 0

︸ ︷︷ ︸

A

=

1 0 0 0
2 1 0 0
3 4 1 0
1 0 2 1

︸ ︷︷ ︸

L

2 −1 0 3
0 0 1 2
0 0 0 −2
0 0 0 1

︸ ︷︷ ︸

U

or three:
2 −1 0 3
4 −2 1 2
6 3 4 −2
2 −1 0 0

︸ ︷︷ ︸

A

=

1 0 0 0
2 1 0 0
3 4 1 0
1 0 2 1

︸ ︷︷ ︸

L

2 −1 0 3
0 0 1 2
0 0 0 −2
0 0 0 0

︸ ︷︷ ︸

U

or four:
0 −1 0 3
0 −2 1 2
0 3 4 −2
0 −1 0 0

︸ ︷︷ ︸

A

=

1 0 0 0
2 1 0 0
3 4 1 0
1 0 2 1

︸ ︷︷ ︸

L

0 −1 0 3
0 0 1 2
0 0 0 −2
0 0 0 0

︸ ︷︷ ︸

U

(Notice how changing only one pivot changes only one column of A: each column of U determines one
column of A via our “matrix × columns” viewpoint on matrix multiplication.)

Intuitively, having more zero pivots seems “more singular”, and requires “more coinci-
dences” in the right-hand side to have a solution, and has a “bigger infinity” of solu-
tions when there is a solution. We will quantify all of these intuitions later in 18.06,
when we begin discussing the [null space](https://en.wikipedia.org/wiki/Kernel (linear algebra) and
[rank](https://en.wikipedia.org/wiki/Rank (linear algebra) of a matrix.

In [27]: [1 0 0 0

2 1 0 0

3 4 1 0

1 0 2 1] *

[2 -1 0 3

9

https://en.wikipedia.org/wiki/Condition_number

0 0 1 2

0 0 0 -2

0 0 0 1]

Out[27]: 4×4 Array{Int64,2}:
2 -1 0 3

4 -2 1 8

6 -3 4 15

2 -1 0 0

In [28]: [1 0 0 0

2 1 0 0

3 4 1 0

1 0 2 1] *

[2 -1 0 3

0 0 1 2

0 0 0 -2

0 0 0 0]

Out[28]: 4×4 Array{Int64,2}:
2 -1 0 3

4 -2 1 8

6 -3 4 15

2 -1 0 -1

In [29]: [1 0 0 0

2 1 0 0

3 4 1 0

1 0 2 1] *

[0 -1 0 3

0 0 1 2

0 0 0 -2

0 0 0 0]

Out[29]: 4×4 Array{Int64,2}:
0 -1 0 3

0 -2 1 8

0 -3 4 15

0 -1 0 -1

5 Matrix inverses

It is often conceptually convenient to talk about the inverse A−1 of a matrix A, which exists for any non-
singular square matrix. This is the matrix such that x = A−1b solves Ax = b for any b. The inverse
is conceptually convenient becuase it allows us to move matrices around in equations almost like numbers
(except that matrices don’t commute!).

Another way of defining the inverse of a matrix involves the identity matrix I. Here is a $ 5
×5$identitymatrix :

I =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =
(
e1 e2 e3 e4 e5

)

where the columns e1 · · · e5 of I are the unit vectors in each component.

10

The identity matrix, which can be constructed by eye(5) in Julia, has the property that Ix = x for any
x, and hence IA = A for any (here 5× 5) matrix A:

In [30]: I5 = eye(Int, 5)

Out[30]: 5×5 Array{Int64,2}:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

In [31]: I5 * b == b

Out[31]: true

In [32]: I5 * A == A

Out[32]: true

The inverse matrix A−1 is the matrix such that A−1A = AA−1 = I.
Why does this correspond to solving Ax = b? Multiplying both sides on the left by A−1 (multiplying on

the right would make no sense: we can’t multiply vector×matrix!), we get

A−1Ax = Ix = x = A−1b

How do we find A−1? The key is the equation AA−1 = I, which looks just like AX = B for the right-
hand sides consisting of the columns of the identity matrix, i.e. the unit vectors. So, we just solve
Ax = ei for i = 1, . . . , 5, or equivalently do A \ I in Julia. Of course, Julia comes with a built-in function
inv(A) for computing A−1 as well:

In [33]: Ainv = A \ I5

Out[33]: 5×5 Array{Float64,2}:
0.0109991 0.529789 -0.908341 -0.635197 -0.0879927

0.131989 0.35747 -0.900092 -0.622365 -0.055912

-0.235564 -0.179652 0.370302 0.353804 -0.11549

-0.301558 -0.69172 1.48701 1.16499 0.0791323

0.2044 0.678582 -1.29667 -1.05408 0.0314696

In [34]: Ainv - inv(A)

Out[34]: 5×5 Array{Float64,2}:
2.10942e-15 2.44249e-15 -2.88658e-15 -2.66454e-15 4.996e-16

1.88738e-15 2.77556e-15 -3.21965e-15 -2.55351e-15 5.27356e-16

-8.04912e-16 -9.99201e-16 1.88738e-15 1.11022e-15 -1.94289e-16

-3.83027e-15 -4.32987e-15 5.9952e-15 5.55112e-15 -7.63278e-16

3.16414e-15 3.66374e-15 -5.32907e-15 -4.44089e-15 6.73073e-16

(The difference is just roundoff errors.)

In [35]: Ainv * A

Out[35]: 5×5 Array{Float64,2}:
1.0 -8.32667e-15 -1.49325e-14 -4.88498e-15 -1.0103e-14

1.46549e-14 1.0 -1.82077e-14 -2.22045e-15 -1.15463e-14

-6.02296e-15 -1.77636e-15 1.0 -1.11022e-15 5.55112e-15

-1.58068e-14 1.4877e-14 2.36478e-14 1.0 1.4877e-14

1.38639e-14 -7.68829e-15 -2.05808e-14 -5.77316e-15 1.0

11

(Again, we get I up to roundoff errors because the computer does arithmetic only to 15–16 significant
digits.)

In [36]: A * Ainv

Out[36]: 5×5 Array{Float64,2}:
1.0 8.88178e-16 0.0 0.0 -5.55112e-17

4.44089e-16 1.0 0.0 -8.88178e-16 0.0

1.72085e-15 -4.21885e-15 1.0 -4.88498e-15 -1.08247e-15

-4.44089e-15 2.66454e-15 5.32907e-15 1.0 7.77156e-16

-3.10862e-15 8.88178e-16 -1.77636e-15 5.32907e-15 1.0

Normally, AB 6= BA for two matrices A and B. Why can we multiply A by A−1 on either the left or
right and get the same answer I? It is fairly easy to see why:

AA−1 = I =⇒ AA−1A = IA = A = A(A−1A)

Since A(A−1A) = A, and A is non-singular (so there is a unique solution to this system of equations),
we must have A−1A = I.

Matrix inverses are funny, however:

• Inverse matrices are very convenient in analytical manipulations, because they allow you to move
matrices from one side to the other of equations easily.

• Inverse matrices are almost never computed in “serious” numerical calculations. Whenever you
see A−1B (or A−1b), when you go to implement it on a computer you should read A−1B as “solve
AX = B by some method.” e.g. solve it by A \ B or by first computing the LU factorization of A and
then using it to solve AX = B.

One reason that you don’t usually compute inverse matrices is that it is wasteful: once you have PA = LU ,
you can solve AX = B directly without bothering to find A−1, and computing A−1 requires much more
work if you only have to solve a few right-hand sides.

Another reason is that for many special matrices, there are ways to solve AX = B much more quickly
than you can find A−1. For example, many large matrices in practice are sparse (mostly zero), and often
for sparse matrices you can arrange for L and U to be sparse too. Sparse matrices are much more efficient
to work with than general “dense” matrices because you don’t have to multiply (or even store) the zeros.
Even if A is sparse, however, A−1 is usually non-sparse, so you lose the special efficiency of sparsity if you
compute the inverse matrix.

12

https://en.wikipedia.org/wiki/Sparse_matrix

