Matrix-mult-perspectives

September 7, 2017

1 Perspectives on matrix multiplication

One of the basic operations in linear algebra is matrix multiplication C = AB, computing the product of an
m X n matrix A with an n X p matrix B to produce an m x p matrix C.

Abstractly, the rules for matrix multiplication are determined once you define how to multiply matrices
by vectors Az, the central linear operation of 18.06, by requiring that multiplication be associative. That is,
we require:

A(Bz) = (AB)x

for all matrices A and B and all vectors x. The expression A(Bz) involves only matrix x vector (computing
y = Bz then Ay), and requiring this to equal (AB)z actually uniquely defines the matrix—matrix product
AB.

1.1 Perspective 1: rows x columns

Regardless of how you derive it, the end result is the familar definition that you take dot products of rows
of A with columns of B to get the product C. For example:

-14 5 10 2 -1 5 1 0 -2
-5 =20 10| =1 3 4 4 1 -5 1
-6 10 6 -4 -2 0 -3 0 3

where we have highlighted the entry —5 =3 x 1+4 x 1 4+ 4 x —3 (second row of A - first column of B).
This can be written out as the formula

n
cij = Y airbi
k=1

in terms of the entries of the matrices, e.g. ¢;; is the entry in row 4, column j of C, assuming A has n
columns and B has n rows.

Essentially all matrix multiplications in practice are done with a version of this formula — at least, with
the same operations, but often the order in which you multiply/add individual numbers is re-arranged.

In this notebook, we will explore several ways to think about these operations by re-
arranging their order.

1.2 Julia matrix multiplication and dot products

Of course, Julia (along with many other software packages) can perform the arithmetic for you:

In [1]: A=[2 -1 5
3 4 4
-4 -2 0]
B=1[1 0o -2
1 -5 1
-3 0 3]
C=A=x%*B

https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Associative_property

Out[1]: 3x3 Array{Int64,2}:

-14 5 10
-5 -20 10
-6 10 6
If we want, we can compute the individual dot products in Julia too. For example, let’s compute c3 1 = —5

(the 2nd row and first column of C, or C[2,1] in Julia) by taking the dot product of the second row of A
with the first column of B.

To extract rows and columns of a matrix, Julia supports a syntax for “array slicing” pioneered by Matlab.
The second row of A is A[2,:], and the first column of B is B[:,1]:

In [2]: A[2,:]

Out[2]: 3-element Array{Int64,1}:
3
4
4

In [3]: B[:,1]

Out[3]: 3-element Array{Int64,1}:
1
1
-3

Now we can compute cg 1 by their dot product via the dot function:
In [4]: dot(A[2,:], B[:,11)
Qut[4]: -5

This matches ¢y ; from above, or C[2,1] in Julia:
In [5]: C[2,1]

OQut[5]: -5

1.3 Perspective 2: matrix x columns

AB can be viewed as multiplying A on the left by each column of B.
For example, let’s multiply A by the first column of B:

In [6]: A*B[:,1]

Out[6]: 3-element Array{Int64,1}:
-14
-5
-6

This is the first column of C! If we do this to all the columns of B, we get C:
In [7]: [A*B[:,1] A*B[:,2] AxB[:,3]] ==
Out[7]: true

Equivalently, each column of B specifies a linear combination of columns of A to produce the columns of
C. So, if you want to rearrange the columns of a matrix, multiply it by another matrix on the
right.

For example, let’s do the transformation that flips the sign of the first column of A and swaps the second
and third columns.

https://en.wikipedia.org/wiki/Linear_combination

In [8]: Ax [-1 O
0 O
0o 1

O = O

]

Out[8]: 3x3 Array{Int64,2}:

-2 5 -1
-3 4 4
4 0 -2

1.4 Perspective 3: rows x matrix

AB can be viewed as multiplying each row of A by the matrix B on the right. Multiplying a row vector by
a matrix on the right produces another row vector.
For example, here is the first row of A:

In [9]: A[1,:]

Out[9]: 3-element Array{Int64,1}:
2
-1
5

Whoops, slicing a matrix in Julia produces a 1d array, which is interpreted as a column vector, no matter
how you slice it. We can’t multiply a column vector by a matrix B on the right — that operation is not
defined in linear algebra (the dimensions don’t match up). Julia will give an error if we try it:

In [10]: A[1,:] * B

DimensionMismatch("matrix A has dimensions (3,1), matrix B has dimensions (3,3)")

in _generic matmatmul! (::Array{Int64,2}, ::Char, ::Char, ::Array{Int64,2}, ::Array{Int64,2}) at
in generic.matmatmul! (::Array{Int64,2}, ::Char, ::Char, ::Array{Int64,2}, ::Array{Int64,2}) at

in *(::Array{Int64,1}, ::Array{Int64,2}) at ./linalg/matmul.jl:86

To get a row vector we must transpose it. In linear algebra, the transpose of a vector x is usually denoted
2T In Julia, the transpose is x..

If we omit the . and just write x it is the complex-conjugate of the transpose, sometimes called the
adjoint, often denoted ¥ (in matrix textbooks), z* (in pure math), or ' (in physics). For real-valued
vectors (no complex numbers), the conjugate transpose is the same as the transpose, and correspondingly
we usually just do x for real vectors.

In [11]: A[1,:]°

Out[11]: 1x3 Array{Int64,2}:
2 -1 5

Now, let’s multiply this by B, which should give the first row of C:

In [12]: A[1,:]° * B

https://en.wikipedia.org/wiki/Row_and_column_vectors
https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/Conjugate_transpose

Yup!
Note that if we multiply a row vector by a matrix on the left, it doesn’t really make sense. Julia will give
an error:

In [13]: B * A[1,:]’

DimensionMismatch("matrix A has dimensions (3,3), matrix B has dimensions (1,3)")

in _generic matmatmul! (::Array{Int64,2}, ::Char, ::Char, ::Array{Int64,2}, ::Array{Int64,2}) at
in generic matmatmul! (::Array{Int64,2}, ::Char, ::Char, ::Array{Int64,2}, ::Array{Int64,2}) at

in A mul Bc(::Array{Int64,2}, ::Array{Int64,1}) at ./operators.jl:320

If we multiply B on the right by all the rows of A, we get C again:

In [14]: [A[1,:]1°*B
Al[2,:]1°+B
A[3,:1’%B] ==

Out[14]: true

Equivalently, each row of A specifies a linear combination of rows of B to produce the rows of C. So, if
you want to rearrange the rows of a matrix, multiply it by another matrix on the left.

For example, let’s do the transformation that adds two times the first row of B to the third row, and
leaves the other rows untouched. This is one of the steps of Gaussian elimination!

In [15]: [1 00
-110
3011 *B

Out[15]: 3x3 Array{Int64,2}:

1 0 -2
0 -5 3
0O 0 -3

1.5 Perspective 4: columns X rows

The key to this perspective is to observe:

e elements in column ¢ of A only multiply elements in row j of B
e a column times a row vector, sometimes denoted zy”, is an outer product and produces a “rank-1"
matrix

For example, here is column 1 of A times row 1 of B:
In [16]: A[:,1] * B[1,:]1°

Out[16]: 3%x3 Array{Int64,2}:

2 0 -4
3 0 -6
-4 0 8

https://en.wikipedia.org/wiki/Outer_product

If we do this for all three rows and columns and add them up, we get C":
In [17]: A[:,1] * B[1,:]1° + A[:,2] = B[2,:]’> + A[:,3] * B[3,:]’ == C
Out[17]: true

So, from this perspective, we could write:
3 3
AB = Z(column k of A)(row k of B) = ZA[:, k] Blk,:]"
k=1 k=1
where in the last expression we have used Julia notation for slices.
Perspective 5: submatrix blocks x blocks
It turns out that all of the above are special cases of a more general rule, by which we can break up a

matrix in to “submatrix” blocks and multiply the blocks. Rows, columns, etc. are just blocks of different
shapes. In homework you will explore another version of this: dividing a 4 x 4 matrix into 2 x 2 blocks.

1.6 More Gaussian elimination

Let’s look more closely at the process of Gaussian elimination in matrix form, using the matrix from lecture
1.

In [18]: A =[1 3 1
11-1
3 11 6]

Out[18]: 3x3 Array{Int64,2}:

1 3 1
1 1 -1
3 11 6

Gaussian elimination produces the matrix U, which we can compute in Julia as in lecture 1:

In [19]: # LU factorization (Gaussian elimination) of the matriz 4,
passing the undocumented option Val{false} to prevent row re-ordering
L, U = 1u(A, Val{false})
U # just show U

Out[19]: 3x3 Array{Float64,2}:
1.0 3.0 1.0
0.0 -2.0 -2.0
0.0 0.0 1.0

Now, let’s go through Gaussian elimination in matrix form, by expressing the elimination steps
as matrix multiplications. In Gaussian elimination, we make linear combination of rows to cancel elements
below the pivot, and we now know that this corresponds to multiplying on the left by some elimination matrix
E.

The first step is to eliminate in the first column of A. The pivot is the 1 in the upper-left-hand corner.
For this A, we need to:

1. Leave the first row alone.
2. Subtract the first row from the second row to get the new second row.
3. Subtract 3 x first frow from the third row to get the new third row.

This corresponds to multiplying A on the left by the matrix E1. As above (in the “row x matrix” picture),
the three rows of E1 correspond exactly to the three row operations listed above:

In [20]: E1 = [100
-110
-3 0 1]

Out[20]: 3x3 Array{Int64,2}:

1 0 O
-1 1 0
-3 0 1

In [21]: E1*A

Out[21]: 3x3 Array{Int64,2}:

1 3 1
0 -2 -2
o 2 3

As desired, this introduced zeros below the diagonal in the first column. Now, we need to eliminate the
2 below the diagonal in the second column of E1*A. Our new pivot is —2 (in the second row), and we just
add the second row of E1*A with the third row to make the new third row.

This corresponds to multiplying on the left by the matrix E2, which leaves the first two rows alone and
makes the new third row by adding the second and third rows:

In [22]: E2 = [1 00O
010
01 1]
Out[22]: 3%x3 Array{Int64,2}:
1 0 O
0 1 0
0 1 1

In [23]: E2*E1*A

Out[23]: 3x3 Array{Int64,2}:

1 3 1
o0 -2 -2
0 0 1

As expected, this is upper triangular, and in fact the same as the U matrix returned by the Julia lu
function above:

In [24]: E2*E1%A ==
Out[24]: true

Thus, we have arrived at the formula:
EsE1A=U
~——
E

Notice that we multiplied A by the elimination matrices from right to left in the order of the steps: it is
E>E1 A, not E1E>A. Because matrix multiplication is generally not commutative, ExFE; and E1Fs give
different matrices:

In [25]: E2%E1l

Out[25]: 3x3 Array{Int64,2}:

1 0 O
-1 1 0
-4 1 1

https://en.wikipedia.org/wiki/Commutative_property

In [26]: E1xE2

Out[26]: 3%x3 Array{Int64,2}:

1 0 O
-1 1 0
-3 1 1

Notice, furthermore, that the matrices F, and Ey are both lower-triangular matrices. This is a conse-
quence of the structure of Gaussian elimination (assuming no row re-ordering): we always add the pivot row
to rows below it, never above it.

In homework, you will explore the fact that the product of lower-triangular matrices is always lower-
triangular too. In consequence, the product E = FyF is lower-triangular, and Gaussian elimination can be
viewed as yielding FA = U where FE is lower triangular and U is upper triangular.

However, in practice, it turns out to be more useful to write this as A = E~'U, where E~! is the inverse
of the matrix E. We will have more to say about matrix inverses later in 18.06, but for now we just need
to know that it is the matrix that reverses the steps of Gaussian elimination, taking us back from U to
A. Computing matrix inverses is laborious in general, but in this particular case it is easy. We just need to
reverse the steps one by one starting with the last elimination step and working back to the first one.

Hence, we need to reverse (invert) Es first on U, and then reverse (invert) Ey: A = ET 1E5 'U. But
reversing an individual elimination step like Fs is easy: we just flip the signs below the diagonal, so
that wherever we added the pivot row we subtract and vice-versa. That is:

-1

1 00 1 0 O
0 10 =(0 1 O
0 1 1 0 -1 1

(The last elimination step was adding the second row to the third row, so we reverse it by subtracting the
second row from the third row of U.)

Julia can compute matrix inverses for us with the inv function. (It doesn’t know the trick of flipping the
sign, which only works for very special matrices, but it can compute it the “hard way” so quickly (for such
a small matrix) that it doesn’t matter.) Of course that gives the same result:

In [27]: inv(E2)

Out[27]: 3x3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 -1.0 1.0

Similarly for Fy:

In [28]: inv(El)

Out[28]: 3x3 Array{Float64,2}:
1.0 0.0 0.0
1.0 1.0 0.0
3.0 0.0 1.0

If we didn’t make any mistakes, then EflEglU should give A, and it does:
In [29]: inv(E1)*inv(E2)*U == A
Out [29]: true

We call inverse elimination matrix L = E~' = E;'E; " Since the inverses of each elimination matrix
were lower-triangular (with flipped signs), their product L is also lower triangular:

http://mathworld.wolfram.com/MatrixInverse.html
http://mathworld.wolfram.com/MatrixInverse.html

In [30]: L = inv(E1)*inv(E2)

Out[30]: 3x3 Array{Float64,2}:
1.0 0.0 0.0

1.0 1.0 0.

3.0 -1.0 1.

o O

As mentioned above, this is the same as the inverse of £ = EyFEy:
In [31]: inv(E2*E1)

Out[31]: 3x3 Array{Float64,2}:
1.0 0.0 0.0
1.0 1.0 0.0
3.0 -1.0 1.0

The final result, therefore, is that Gaussian elimination (without row swaps) can be viewed as a factor-

ization of the original matrix A
A=LU

into a product of lower- and upper-triangular matrices. (Furthermore, although we didn’t comment
on this above, L is always 1 along its diagonal.) This factorization is called the LU factorization of A. (It’s
why we used the lu function in Julia above.) When a computer performs Gaussian elimination, what it
computes are the L and U factors.

What this accomplishes is to break a complicated matrix A into much simpler pieces L and U. It may
not seem at first that L and U are that much simpler than A, but they are: lots of operations that are very
difficult with A, like solving equations or computing the determinant, become easy once you known L and
U.

https://en.wikipedia.org/wiki/LU_decomposition

