
Orthogonal-Polynomials

September 7, 2017

In [1]: # Pkg.add(["Polynomials", "PyPlot"]) uncomment to install if needed

using Polynomials, PyPlot

1 Dot products of functions

We can apply the Gram–Schmidt process to any vector space as long as we define a dot product (also
called an inner product). (Technically, a continuous (“complete”) vector space equipped with an inner
product is called a Hilbert space.)

For column vectors, the usual dot product is to multiply the components and add them up.
But (real-valued) functions f(x) also define a vector space (you can add, subtract, and multiply by

constants). In particular, consider functions defined on the interval x ∈ [−1, 1]. The “components” of f
can be viewed as its values f(x) at each point in the domain, and the obvious analogue of “summing the
components” is the integral. Hence, the most obvious “dot product” of two functions in this space is:

f · g =

∫ 1

0

f(x)g(x) dx

Such a generalized inner product is commonly denoted 〈f, g〉 (or 〈f |g〉 in physics).

2 Orthogonal polynomials

In particular, let us consider a subspace of functions defined on [−1, 1]: polynomials p(x) (of any degree).
One possible basis of polynomials is simply:

1, x, x2, x3, . . .

(There are infinitely many polynomials in this basis because this vector space is infinite-dimensional.)
Instead, let us apply Gram–Schmidt to this basis in order to get an orthogonal basis of polynomials

known as the Legendre polynomials.

2.1 Julia code

I’ll use the Polynomials package to do polynomial arithmetic for me.
However, I’ll need to define a few extra methods to perform my dot products from above, and I also want

to display (“pretty print”) the polynomials a bit more nicely than the default.

In [2]: # compute the definite integral of p(x) from a to b

function Polynomials.polyint(p::Poly, a, b)

pi = polyint(p)

pi(b) - pi(a)

end

compute the dot product 〈p,q〉 =
∫
p(x)q(x) on [-1,1]

polydot(p::Poly, q::Poly) = polyint(p*q, -1,1)

1

https://en.wikipedia.org/wiki/Legendre_polynomials
https://github.com/Keno/Polynomials.jl

Out[2]: polydot (generic function with 1 method)

In [3]: # force IJulia to display as LaTeX rather than HTML

Base.mimewritable(::MIME"text/html", ::Poly) = false

2.2 Gram–Schmidt on polynomials

Now, let’s apply Gram–Schmidt on the polynomials ai = xi for i = 0, 1,
Ordinarily, in Gram–Schmidt, I would normalize each result p(x) by dividing by ‖p‖ =

√
p · p, but that

will result in a lot of annoying square roots. Instead, I will divide by p(1) to result in the more conventional
Legendre polynomials.

That means that to get pi(x), I will do:

p̂i(x) = ai(x)−
i−1∑
j=0

pj(x)
pj · ai
pj · pj

p(x) = p̂(x)/p̂(1)

where I explicitly divide by pi · pi in the projections to compensate for the lack of normalization.
In Julia, I will use the special syntax 2 // 3 to construct the exact rational 2

3 , etc. This will allow me
to see the exact Legendre polynomials without any roundoff errors or annoying decimals.

In [4]: p0 = a0 = Poly([1//1])

Out[4]:

1

In [5]: a1 = Poly([0, 1//1])

Out[5]:

x

In [6]: p1 = a1 - p0 * polydot(p0, a1) // polydot(p0, p0)

p1 = p1 / p1(1)

Out[6]:

x

Orthogonalization didn’t change x, because x and 1 are already orthogonal under this dot product. In
fact, any even power of x is orthogonal to any odd power (because the dot product is the integral of an even
function times an odd function).

On the other hand, x2 and 1 are not orthogonal, so orthogonalizing them leads to a different polynomial
of degree 2:

In [7]: a2 = Poly([0, 0, 1//1])

Out[7]:

x2

In [8]: p2 = a2 - p0 * polydot(p0, a2) // polydot(p0, p0) -

p1 * polydot(p1, a2) // polydot(p1, p1)

p2 = p2 / p2(1)

2

Out[8]:

− 1
2 + 3

2 · x
2

It quickly gets tiresome to type in these expressions one by one, so let’s just write a function to compute
the Legendre polynomials p0, . . . , pn:

In [9]: function legendre_gramschmidt(n)

legendre = [Poly([1//1])]

for i = 1:n

p = Poly([k == i ? 1//1 : 0//1 for k=0:i])

for q in legendre

p = p - q * (polydot(q, p) // polydot(q,q))

end

push!(legendre, p / p(1))

end

return legendre

end

Out[9]: legendre gramschmidt (generic function with 1 method)

In [10]: L = legendre_gramschmidt(5)

Out[10]: 6-element Array{Polynomials.Poly{Rational{Int64}},1}:
Poly(1//1)

Poly(x)

Poly(-1//2 + 3//2·x^2)
Poly(-3//2·x + 5//2·x^3)
Poly(3//8 - 15//4·x^2 + 35//8·x^4)
Poly(15//8·x - 35//4·x^3 + 63//8·x^5)

Let’s display them more nicely with LaTeX:

In [11]: foreach(p -> display("text/latex", p), L)

1

x

− 1
2 + 3

2 · x
2

− 3
2 · x+ 5

2 · x
3

3
8 −

15
4 · x

2 + 35
8 · x

4

15
8 · x−

35
4 · x

3 + 63
8 · x

5

Key things to notice:

• The polynomials contain only even or only odd powers of x, but not both. The reason is that the even
and odd powers of x are already orthogonal under this dot product, as noted above.

3

• A key property of Gram–Schmidt is that the first k vectors span the same space as the original
first k vectors, for any k. In this case, it means that p0, . . . , pk span the same space as 1, x, . . . , xk.
That is, the p0, . . . , pk polynomials are an orthogonal basis for all polynomials of degree k or
less.

These polynomials are very special in many ways. To get a hint of that, let’s plot them:

In [12]: leg = []

x = linspace(-1, 1, 300)

for i in eachindex(L)

plot(x, L[i].(x), "-")

push!(leg, "\$P_{$(i-1)}(x)\$")

end

plot(x, 0*x, "k--")

legend(leg)

xlabel(L"x")

ylabel("Legendre polynomials")

Out[12]: PyObject <matplotlib.text.Text object at 0x31f804510>

Note that pn(x) has exactly n roots in the interval [−1, 1]!

2.2.1 Expanding a polynomial in the Legendre basis.

Now that we have an orthogonal (but not orthonormal) basis, it is easy to take an arbitrary polynomial p(x)
and write it in this basis:

4

p(x) = α0p0(x) + α1p1(x) + · · · =
∞∑
i=0

αipi(x)

because we can get the coefficients αi merely by projecting:

αi =
pi · p
pi · pi

Note, however, that this isn’t actually an infinite series: if the polynomial p(x) has degree d, then αi = 0
for i > d. The polynomials p0, . . . , pd are a basis for the subspace of polynomials of degree d (= span of
1, x, . . . , xd)!

Let’s see how this works for a “randomly” chosen p(x) of degree 5:

In [13]: p = Poly([1,3,4,7,2,5])

Out[13]:

1 + 3 · x+ 4 · x2 + 7 · x3 + 2 · x4 + 5 · x5

Here are the coefficients α:

In [14]: α = [polydot(q,p)/polydot(q,q) for q in L]

Out[14]: 6-element Array{Rational{Int64},1}:
41//15

327//35

80//21

226//45

16//35

40//63

Let’s check that the sum of αipi(x) gives p(x):

In [15]: sum(α .* L) # α[1]*L[1] + α[2]*L[2] + ... + α[6]*L[6]

Out[15]:

1 + 3 · x+ 4 · x2 + 7 · x3 + 2 · x4 + 5 · x5

In [16]: sum(α .* L) - p

Out[16]:

0//1

2.3 Polynomial fits

2.3.1 Review: Projections and Least-Square

Given a matrix Q with n orthonormal columns qi, we know that the orthogonal projection

p = QQT b =

n∑
i=1

qiq
T
i b

is the closest vector in C(Q) to b. That is, it minimizes the distance:

min
p∈C(Q)

‖p− b‖ .

5

2.3.2 Closest polynomials

Now, suppose that we have some function f(x) on x ∈ [−1, 1] that is not a polynomial, and we want to
find the closest polynomial of degree n to f(x) in the least-square sense. That is, we want to find the
polynomials p(x) of degree n that minimizes

min
p∈Pn

∫ 1

−1
|f(x)− p(x)|2dx = min

p∈Pn

‖f(x)− p(x)‖2

where

Pn = span{1, x, x2, . . . , xn} = span{p0(x), p1(x), . . . , pn(x)}

is the space of polynomials of degree ≤ n, spanned by our Legendre polynomials up to degree n.
Presented in this context, we can see that this is the same problem as our least-square problem above,

and the solution should be the same: p(x) is the orthogonal projection of f(x) onto Pn, given by:

p(x) = p0(x)
p0 · f
p0 · p0

+ · · · pn(x)
pn · f
pn · pn

.

Let’s try this out for f(x) = ex. Because we’re lazy, we’ll have Julia compute the integrals numerically
using its quadgk function, and fit it to polynomials of degree 5 using our Legendre polynomials from above.

In [17]: polydot(p::Poly, f::Function) = quadgk(x -> p(x)*f(x), -1,1, abstol=1e-13, reltol=1e-11)[1]

Out[17]: polydot (generic function with 2 methods)

Now, let’s use dot products to compute the coefficients in the pi(x) expansion above for f(x) = ex (the
exp function in Julia):

In [18]: coeffs = [polydot(p,exp)/polydot(p,p) for p in L]

Out[18]: 6-element Array{Float64,1}:
1.1752

1.10364

0.357814

0.0704556

0.00996513

0.00109959

One thing to notice is an important fact: expanding functions, especially smooth functions, in orthogonal
bases like Legendre polynomials or Fourier series tends to converge very rapidly.

Let’s write out the resulting polynomial p(x):

In [19]: p = sum(coeffs .* L)

Out[19]:

1.0000309413759412 + 1.0000165970001087 · x+ 0.4993522954128024 · x2 + 0.1665177055581527 · x3 + 0.04359743565129904 · x4 + 0.008659240751762349 · x5

Let’s plot it:

In [20]: plot(x, exp.(x), "r-")

plot(x, p.(x), "b--")

legend([L"e^x", L"fit $p(x)$"])

xlabel(L"x")

title(L"fitting e^x to a degree-5 polynomial")

6

https://en.wikipedia.org/wiki/Smoothness

Out[20]: PyObject <matplotlib.text.Text object at 0x31f991610>

They are so close that you can hardly tell the difference!
Let’s plot the fits for degree 0, 1, . . . , 3 so that we can watch it converge:

In [21]: plot(x, exp.(x), "k--")

for n = 1:4

plot(x, sum([polydot(p,exp)/polydot(p,p) for p in L[1:n]] .* L[1:n]).(x), "-")

end

legend([L"e^x", ["degree $i" for i=0:3]...])

xlabel(L"x")

title(L"fitting e^x to polynomials")

7

Out[21]: PyObject <matplotlib.text.Text object at 0x322f64950>

By degree 3, it is hard to tell the difference from ex.

8

