Projections

September 7, 2017

In [1]: using PyPlot, Interact

0.1 Projection onto a line

Suppose b is a vector of data and we want to find p, a multiple of $a=(1,1, \ldots, 1)$, say, closest to b. Which vector is that?

Let us call this vector $p=\hat{x} a$.
Here is an example in 2d:
In [2]: b $=\operatorname{rand}(2)$
Out [2]: 2-element Array\{Float64,1\}:
0.405977
0.752382

In [3]: figure (figsize=(5,5))
arrow ($0,0, \mathrm{~b}[1], \mathrm{b}[2]$, head_width $=0.05$, head_length=0.03, color="r") plot([0,1.1],[0,1.1],":")
text(b[1]+.03,b[2],"b", color="r")
text(1.03,1.06,"a")
axis([0,1.1,0,1.1]);

In [4]: b $=$ rand (2) \# random red vector

```
figure(figsize=(5,5))
arrow(0,0,b[1],b[2],head_width=0.05, head_length=0.03,color="r")
text(b[1]+.03,b[2],"b",color="r")
plot([0,1.1],[0,1.1],":")
axis([0,1.1,0,1.1]);
a = ones(2) # target direction
x^ = (a'b)/(a'a)
p = a * x^ # projection
plot([b[1],p[1]],[b[2],p[2]],":")
arrow(0,0,p[1],p[2],head_width=0.05, head_length=0.03)
text(p[1]+.03,p[2],"p=Pb=x`a")
text(1.03,1.06,"a")
```


Out [4]: PyObject <matplotlib.text. Text object at 0x329310c50>
Let us break this into steps

1. Find \hat{x}
2. Find p
3. Find matrix P such that $P b=p$

To do this form the "error" vector $e=b-p=b-\hat{x} a$ where \hat{x} is the unknown. We choose \hat{x} specifically to make $e \perp a$.

We want $a \cdot(b-\hat{x} a)=0$ (where \cdot denotes the dot product) so that

1. $\$=(\mathrm{a} \cdot b) /(a \cdot a)=\left(a^{\mathrm{Tb}) /(\mathrm{a}}\right.$ Ta) \$wethenhavep $=\hat{x} a=a \hat{x}=a\left(a^{T} b\right) /\left(a^{T} a\right)$
2. $P b=a\left(a^{T} b\right) /\left(a^{T} a\right)$ gives $P=\left(a a^{T}\right) /\left(a^{T} a\right)$

Example:
In [5]: $P=\left(a * a^{\prime}\right) /\left(a^{\prime} a\right)$
Out[5]: 2×2 Array\{Float64,2\}:
$0.5 \quad 0.5$
$0.5 \quad 0.5$
In [6]: @manipulate for $\mathrm{n}=$ slider (1:15, value=2)
$\mathrm{a}=$ ones(Rational, n$)$
$P=\left(a * a{ }^{\prime}\right) /\left(a^{\prime} a\right)$
end

Out [6]: 2×2 Array\{Rational\{Int64\}, 2$\}$:
1//2 1//2
1//2 1//2
In the special case of a being the ones vector, \hat{x} is the mean of b. If only one number is used to summarize a large data vector b, it is commonly the mean.

Now consider more general a.

```
In [7]: b = rand(2) # random red vector
    a = rand(2); a *= 1.1/maximum(a) # target direction
    P = (a*a')/a'a
    p = P*b
    figure(figsize=(5,5))
    arrow(0,0,b[1],b[2],head_width=0.05, head_length=0.03,color="r")
    text(b[1]+.03,b[2],"b",color="r")
    plot([0,a[1]],[0,a[2]],":")
    axis([0,1.1,0,1.1]);
    plot([b[1],p[1]],[b[2],p[2]],":")
    arrow(0,0,p[1],p[2],head_width=0.05, head_length=0.03)
    text(p[1]+.03,p[2],"p=Pb=x^a")
    text(a[1]+.03,a[2],"a")
```


Out [7]: PyObject <matplotlib.text.Text object at 0x3296e27d0>

```
In [8]: # Powers of P remain equal. Explain why geometrically?
    # Answer: once you project, projecting again keeps you where you were
    display(P)
    display(P^2)
    display(P^3)
2\times2 Array{Float64,2}:
    0.999947 0.00729359
    0.00729359 5.31993e-5
2\times2 Array{Float64,2}:
    0.999947 0.00729359
    0.00729359 5.31993e-5
2\times2 Array{Float64,2}:
    0.999947 0.00729359
    0.00729359 5.31993e-5
```

Relationship to least squares:
In $[9]: x{ }^{\sim}=\left(a^{\prime} b\right) /\left(a^{\prime} a\right)$
Out[9]: 1×1 Array $\{$ Float64,2 $\}$: 0.770082

In [10]: $\mathrm{a} \backslash \mathrm{b}$

```
Out[10]: 1-element Array{Float64,1}:
```

 0.770082

0.2 Projection on a subspace

```
In [11]: A = rand(5, 3) # consider the subspace spanned by the columns of A
Out[11]: 5\times3 Array{Float64,2}:
    0.857652 0.517855 0.280477
    0.418829 0.556069 0.964192
    0.376845 0.64954 0.692936
    0.839149 0.0958249 0.297049
    0.533046 0.988303 0.900709
In [12]: b = rand(5)
Out[12]: 5-element Array{Float64,1}:
        0.65487
        0.536363
        0.847276
        0.527487
        0.667052
```

Our problem 1. Find the vector p that is in the column space of A that is closest to $b 2$. Project b onto the column space of A

Find the linear combination of the columns of $(m \times n) A$ closest to b
In other words, find an \hat{x} in \Re^{n} such that $A \hat{x}$ is closest to b.
How do we find \hat{x} ? Idea is the same as the line. Make $\$ \mathrm{e}=\mathrm{b}-\mathrm{A} \perp \$$ toeverycolumnof A :
$A^{T}(b-A \hat{x})=0$ is equivalent to the first column of A is orthogonal to e, and the second column is orthogonal to e, \ldots, and the last column of A is orthogonal to A.
$A^{T} A \hat{x}=A^{T} b$. (known as the normal equations)

1. $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$
2. $p=A \hat{x}=A\left(A^{T} A\right)^{-1} A^{T} b$
3. $\$ \mathrm{P}=\mathrm{A}\left(\mathrm{A}^{\mathrm{TA})}\{-1\} \mathrm{A}^{\wedge} \mathrm{T} \$\right.$ (is the projection matrix)

Some examples

```
In [13]: A
Out[13]: 5 < 3 Array{Float64,2}:
    0.857652 0.517855 0.280477
    0.418829 0.556069 0.964192
    0.376845 0.64954 0.692936
    0.839149 0.0958249 0.297049
    0.533046 0.988303 0.900709
In [14]: P = A * inv(A'A) * A'
Out[14]: 5\times5 Array{Float64,2}:
\begin{tabular}{ccccc}
0.680624 & -0.275029 & 0.0718287 & 0.273674 & 0.24835 \\
-0.275029 & 0.726659 & 0.227343 & 0.235613 & 0.125645 \\
0.0718287 & 0.227343 & 0.233565 & -0.0612794 & 0.344112 \\
0.273674 & 0.235613 & -0.0612794 & 0.765488 & -0.212956 \\
0.24835 & 0.125645 & 0.344112 & -0.212956 & 0.593663
\end{tabular}
In [15]: P^10
Out[15]: 5\times5 Array{Float64,2}:
            0.680624 -0.275029 0.0718287 0.273674 0.24835
    -0.275029 0.726659 0.227343 0.235613 0.125645
    0.0718287 0.227343 0.233565 -0.0612794 0.344112
    0.273674 0.235613 -0.0612794 0.765488
    0.24835 0.125645 0.344112 -0.212956 0.593663
In [16]: b = rand(5)
Out[16]: 5-element Array{Float64,1}:
    0.458361
    0.601126
    0.721415
    0.940134
    0.816022
In [17]: p = P*b
Out[17]: 5-element Array{Float64,1}:
    0.658412
    0.798797
    0.561274
    0.768752
    0.721845
```

```
In [18]: e = p - b
Out[18]: 5-element Array{Float64,1}:
    0.200051
    0.197671
    -0.16014
    -0.171382
    -0.094177
In [19]: A'e
Out[19]: 3-element Array{Float64,1}:
    -1.49186e-15
    -1.22125e-15
    -1.67921e-15
In [20]: x^] = inv(A'A)*A'b
Out[20]: 3-element Array{Float64,1}:
    0.707741
    -0.265997
    0.674437
In [21]: A\b # in matlab and in julia, to solve the least squares system
    # Ax=b for the best vector x^, type A\b
Out[21]: 3-element Array{Float64,1}:
        0.707741
    -0.265997
        0.674437
```


0.3 Math: $\left(A^{T} A\right)$ is invertible when A has linearly independent columns

Suppose that $A^{T} A$ is not invertible. Then there is a nonzero $\mathrm{x} x$ such that $A^{T} A x=0$. Then $x^{T} A^{T} A x=0=$ $\|A x\|^{2}$. Then $A x=0$ meaning A does not have linearly independent columns. Taking the contrapositive, if A has linearly independent columns $A^{T} A$ is invertible.

Note logically one should prove the converse too. This is implied in the "when." If A does not have linearly independent columns, there is a nonzero x with $A x=0$. Multiplying by A^{T} we have $A^{T} A x$ is then 0 so $A^{T} A$ is not invertible.

0.4 Briefly mentioned:

- Chebychev Approximation $=$ polynomial fitting $=$ linear equations
- Machine learning $=$ nonlinear fitting $=$ nonlinear equations
- In high school stats classes, students are told to divide by $n-1$, not n, for sample variance.
- Some argument about degrees of freedom usually appeases the masses. In fact, the projection matrix $P=I-\operatorname{ones}(n, n) / n$ can be viewed as "removing the mean" or projection orthogonal to the "ones" vector. Removing the true mean creates a vector whose element squares have expectation σ^{2} and cross terms have expectation 0 .
- You might check that the sample variance numerator is $\|P b\|^{2}$. This is the same as $b^{T} P b$, which is readliy checked to have average σ^{2} times the sum of the diagonal elements of P, which is $n \times\left(1-\frac{1}{n}\right)=$ $n-1$.

