
Projections

September 7, 2017

In [1]: using PyPlot, Interact

0.1 Projection onto a line

Suppose b is a vector of data and we want to find p, a multiple of a = (1, 1, . . . , 1), say, closest to b. Which
vector is that?

Let us call this vector p = x̂a.
Here is an example in 2d:

In [2]: b = rand(2)

Out[2]: 2-element Array{Float64,1}:
0.405977

0.752382

In [3]: figure(figsize=(5,5))

arrow(0,0,b[1],b[2],head_width=0.05, head_length=0.03,color="r")

plot([0,1.1],[0,1.1],":")

text(b[1]+.03,b[2],"b",color="r")

text(1.03,1.06,"a")

axis([0,1.1,0,1.1]);

1

In [4]: b = rand(2) # random red vector

figure(figsize=(5,5))

arrow(0,0,b[1],b[2],head_width=0.05, head_length=0.03,color="r")

text(b[1]+.03,b[2],"b",color="r")

plot([0,1.1],[0,1.1],":")

axis([0,1.1,0,1.1]);

a = ones(2) # target direction

x^ = (a’b)/(a’a)

p = a * x^ # projection

plot([b[1],p[1]],[b[2],p[2]],":")

arrow(0,0,p[1],p[2],head_width=0.05, head_length=0.03)

text(p[1]+.03,p[2],"p=Pb=x^a")

text(1.03,1.06,"a")

2

Out[4]: PyObject <matplotlib.text.Text object at 0x329310c50>

Let us break this into steps

1. Find x̂
2. Find p
3. Find matrix P such that Pb = p

To do this form the “error” vector e = b− p = b− x̂a where x̂ is the unknown. We choose x̂ specifically
to make e ⊥ a.

We want a · (b− x̂a) = 0 (where · denotes the dot product) so that

1. $ = (a ·b)/(a · a) = (aTb)/(aTa)$wethenhavep = x̂a = ax̂ = a(aT b)/(aTa)
2.3. Pb = a(aT b)/(aTa) gives P = (aaT)/(aTa)

Example:

In [5]: P = (a*a’)/(a’a)

Out[5]: 2×2 Array{Float64,2}:
0.5 0.5

0.5 0.5

In [6]: @manipulate for n=slider(1:15,value=2)

a = ones(Rational,n)

P = (a*a’)/(a’a)

end

3

Interact.Slider{Int64}(Signal{Int64}(2, nactions=1),"",2,1:15,"horizontal",true,"d",true)

Out[6]: 2×2 Array{Rational{Int64},2}:
1//2 1//2

1//2 1//2

In the special case of a being the ones vector, x̂ is the mean of b. If only one number is used to summarize
a large data vector b, it is commonly the mean.

Now consider more general a.

In [7]: b = rand(2) # random red vector

a = rand(2); a *= 1.1/maximum(a) # target direction

P = (a*a’)/a’a

p = P*b

figure(figsize=(5,5))

arrow(0,0,b[1],b[2],head_width=0.05, head_length=0.03,color="r")

text(b[1]+.03,b[2],"b",color="r")

plot([0,a[1]],[0,a[2]],":")

axis([0,1.1,0,1.1]);

plot([b[1],p[1]],[b[2],p[2]],":")

arrow(0,0,p[1],p[2],head_width=0.05, head_length=0.03)

text(p[1]+.03,p[2],"p=Pb=x^a")

text(a[1]+.03,a[2],"a")

4

Out[7]: PyObject <matplotlib.text.Text object at 0x3296e27d0>

In [8]: # Powers of P remain equal. Explain why geometrically?

Answer: once you project, projecting again keeps you where you were

display(P)

display(P^2)

display(P^3)

2×2 Array{Float64,2}:

0.999947 0.00729359

0.00729359 5.31993e-5

2×2 Array{Float64,2}:

0.999947 0.00729359

0.00729359 5.31993e-5

2×2 Array{Float64,2}:

0.999947 0.00729359

0.00729359 5.31993e-5

Relationship to least squares:

In [9]: x^= (a’b)/(a’a)

Out[9]: 1×1 Array{Float64,2}:
0.770082

In [10]: a\b

Out[10]: 1-element Array{Float64,1}:
0.770082

0.2 Projection on a subspace

In [11]: A = rand(5, 3) # consider the subspace spanned by the columns of A

Out[11]: 5×3 Array{Float64,2}:
0.857652 0.517855 0.280477

0.418829 0.556069 0.964192

0.376845 0.64954 0.692936

0.839149 0.0958249 0.297049

0.533046 0.988303 0.900709

In [12]: b = rand(5)

Out[12]: 5-element Array{Float64,1}:
0.65487

0.536363

0.847276

0.527487

0.667052

5

Our problem 1. Find the vector p that is in the column space of A that is closest to b 2. Project b onto
the column space of A

Find the linear combination of the columns of (m× n) A closest to b
In other words, find an x̂ in <n such that Ax̂ is closest to b.
How do we find x̂? Idea is the same as the line. Make $e=b-A ⊥ $toeverycolumnofA:
AT (b − Ax̂) = 0 is equivalent to the first column of A is orthogonal to e, and the second column is

orthogonal to e, . . . , and the last column of A is orthogonal to A.
ATAx̂ = AT b. (known as the normal equations)

1. x̂ = (ATA)−1AT b
2. p = Ax̂ = A(ATA)−1AT b
3. $P =A(ATA){-1}AˆT $ (is the projection matrix)

Some examples

In [13]: A

Out[13]: 5×3 Array{Float64,2}:
0.857652 0.517855 0.280477

0.418829 0.556069 0.964192

0.376845 0.64954 0.692936

0.839149 0.0958249 0.297049

0.533046 0.988303 0.900709

In [14]: P = A * inv(A’A) * A’

Out[14]: 5×5 Array{Float64,2}:
0.680624 -0.275029 0.0718287 0.273674 0.24835

-0.275029 0.726659 0.227343 0.235613 0.125645

0.0718287 0.227343 0.233565 -0.0612794 0.344112

0.273674 0.235613 -0.0612794 0.765488 -0.212956

0.24835 0.125645 0.344112 -0.212956 0.593663

In [15]: P^10

Out[15]: 5×5 Array{Float64,2}:
0.680624 -0.275029 0.0718287 0.273674 0.24835

-0.275029 0.726659 0.227343 0.235613 0.125645

0.0718287 0.227343 0.233565 -0.0612794 0.344112

0.273674 0.235613 -0.0612794 0.765488 -0.212956

0.24835 0.125645 0.344112 -0.212956 0.593663

In [16]: b = rand(5)

Out[16]: 5-element Array{Float64,1}:
0.458361

0.601126

0.721415

0.940134

0.816022

In [17]: p = P*b

Out[17]: 5-element Array{Float64,1}:
0.658412

0.798797

0.561274

0.768752

0.721845

6

In [18]: e = p - b

Out[18]: 5-element Array{Float64,1}:
0.200051

0.197671

-0.16014

-0.171382

-0.094177

In [19]: A’e

Out[19]: 3-element Array{Float64,1}:
-1.49186e-15

-1.22125e-15

-1.67921e-15

In [20]: x^ = inv(A’A)*A’b

Out[20]: 3-element Array{Float64,1}:
0.707741

-0.265997

0.674437

In [21]: A\b # in matlab and in julia, to solve the least squares system

Ax=b for the best vector x^, type A\b

Out[21]: 3-element Array{Float64,1}:
0.707741

-0.265997

0.674437

0.3 Math: (ATA) is invertible when A has linearly independent columns

Suppose that ATA is not invertible. Then there is a nonzero x x such that ATAx = 0. Then xTATAx = 0 =
‖Ax‖2. Then Ax = 0 meaning A does not have linearly independent columns. Taking the contrapositive, if
A has linearly independent columns ATA is invertible.

Note logically one should prove the converse too. This is implied in the “when.” If A does not have
linearly independent columns, there is a nonzero x with Ax = 0. Multiplying by AT we have ATAx is then
0 so ATA is not invertible.

0.4 Briefly mentioned:

• Chebychev Approximation = polynomial fitting = linear equations

• Machine learning = nonlinear fitting = nonlinear equations

• In high school stats classes , students are told to divide by n− 1, not n, for sample variance.

• Some argument about degrees of freedom usually appeases the masses. In fact, the projection matrix
P = I - ones(n,n)/n can be viewed as “removing the mean” or projection orthogonal to the “ones”
vector. Removing the true mean creates a vector whose element squares have expectation σ2 and cross
terms have expectation 0.

• You might check that the sample variance numerator is ‖Pb‖2. This is the same as bTPb, which is
readliy checked to have average σ2 times the sum of the diagonal elements of P , which is n×

(
1− 1

n

)
=

n− 1.

7

