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1 Fourier sine series

Consider the sine functions sin(nπx) for n = 1, 2, . . . on the interval x ∈ [0, 1], with the “usual” function

inner product f(x) · g(x) =
∫ 1

0
f(x)g(x) dx. It is a remarkable fact that the sine functions are orthogonal

under this dot product:

sin(mπx) · sin(nπx) =

∫ 1

0

sin(mπx) sin(nπx) dx =

{
0 m 6= n
1
2 m = n

.

This can be verified by simply doing the integral, a first-year calculus exercise. (The identity sinA sinB =
1
2 [cos(A−B)− cos(A+B)] is useful here.)

Let’s plot a few of these functions:

In [1]: using PyPlot

x = linspace(0,1,200)

plot(x, sin.(π*x), "-")

plot(x, sin.(2π*x), "-")

plot(x, sin.(3π*x), "-")

plot(x, sin.(4π*x), "-")

legend([L"\sin(\pi x)", L"\sin(2\pi x)", L"\sin(3\pi x)", L"\sin(4\pi x)"])

xlabel(L"x")

title("orthogonal sine functions")
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Out[1]: PyObject <matplotlib.text.Text object at 0x3213c8090>

1.1 Sines as an orthogonal basis

We can consider the sin(nπx) functions as an orthogonal basis for some set of functions, defined by all linear
combinations of these sin(nπx) functions (their span). At first glance, it seems like this should be a rather
“small” subspace of all functions. One of the most remarkable facts of mathematics, however, is that the
span of the sine functions contains nearly all possible functions of practical interest! This was first proposed
by Fourier in 1807, but took almost 150 years to make rigorous and precise.

For a function f(x) defined on x ∈ [0, 1], the Fourier sine series writes f(x) as:

• f(x) =
∑∞
n=1 bn sin(nπx)

where the coefficients bn can be found by integration:

• bm = 2
∫ 1

0
f(x) sin(mπx)dx.

Let’s define a function sinecoef in Julia to compute these integrals numerically, using Julia’s quadgk
function We’ll use the abstol parameter to set an integration tolerance: we want the error to be small

compared to
√∫ 1

0
|f(x)|2dx.

In [2]: sinecoef(f, m) = 2 * quadgk(x -> f(x) * sin(m*π*x), 0,1, abstol=1e-8 * sqrt(quadgk(x->abs2(f(x)),0,1)[1]))[1]

# and another function to work on a vector of integers

sinecoef(f, M::AbstractVector) = Float64[sinecoef(f,m) for m in M]
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Out[2]: sinecoef (generic function with 2 methods)

1.2 A sine-series example

For example, if we have the function f(x) = 0.5− |x− 0.5|, the first 20 coefficients are:

In [3]: f(x) = 0.5 - abs(x - 0.5)

sinecoef(f, 1:20)

Out[3]: 20-element Array{Float64,1}:
0.405285

5.03187e-18

-0.0450316

1.82116e-17

0.0162114

-2.0849e-17

-0.00827112

-1.25544e-17

0.00500352

4.70332e-17

-0.00334946

-7.30892e-18

0.00239813

-2.34147e-16

-0.00180127

-8.72534e-17

0.00140237

3.67697e-16

-0.00112267

-4.11412e-16

(Notice that bn = 0 for even n, which correspond to antisymmetric sine functions that integrate to zero
against this symmetric f .) The coefficients seem to be converging (getting smaller), as we would hope for a
convergent series. Let’s plot them.

In [4]: using PyPlot

n = 1:2:99 # odd integers from 1 to 99

loglog(n, abs(sinecoef(f, n)), "bo")

xlabel(L"n")

ylabel(L"Fourier sine coefficient $|b_n|$")

title(L"Sine series convergence for $f(x) = 0.5 - |x - 0.5|$")

loglog(n, 1 ./ n.^2, "b--")

legend([L"|b_n|", L"1/n^2"])
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Out[4]: PyObject <matplotlib.legend.Legend object at 0x32152df10>

They decay asymptotically as 1/n2. It turns out that one can prove this from the fact that f(x) is
continuous with a discontinuous slope.

Now let’s plot the series itself and compare it to f(x). We’ll use Julia’s Interact package so that we can
drag a slider to control the number of terms in the series.

In [5]: # First, define a function to evaluate N terms of the sine series, given the coefficients b

function sinesum(b, x)

f = 0.0

for n = 1:length(b)

f += b[n] * sin(n*π*x)
end

return f

end

sinesum(b, X::AbstractVector) = Float64[sinesum(b,x) for x in X]

Out[5]: sinesum (generic function with 2 methods)

In [6]: using Interact

fig = figure()

x = linspace(0,1, 1000)

@manipulate for n=1:2:99

withfig(fig) do
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plot(x, f(x), "k--")

b = sinecoef(f, 1:n)

plot(x, sinesum(b, x), "r-")

xlabel(L"$x$")

legend(["exact f", "$n-term sine series"])

end

end

Interact.Options{:SelectionSlider,Int64}(Signal{Int64}(49, nactions=1),"n",49,"49",Interact.OptionDict(DataStructures.OrderedDict("1"=>1,"3"=>3,"5"=>5,"7"=>7,"9"=>9,"11"=>11,"13"=>13,"15"=>15,"17"=>17,"19"=>19...),Dict(89=>"89",11=>"11",39=>"39",85=>"85",25=>"25",55=>"55",29=>"29",59=>"59",95=>"95",57=>"57"...)),Any[],Any[],true,"horizontal")

Out[6]:

In contrast, if we make a smoother function, e.g. g(x) = sin(sin(3πx) + 5 sin(πx)), then it eventually
converges much more quickly (in fact, for a smooth function like this the series converges exponentially fast):

In [7]: using Interact

fig = figure(figsize=(15,6))

g(x) = sin(sin(3π*x) + 5*sin(π*x))
@manipulate for n=1:2:37

withfig(fig) do

subplot(1,2,1)

plot(x, g(x), "k--")

b = sinecoef(g, 1:n)

plot(x, sinesum(b, x), "r-")

xlabel(L"x")
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legend(["exact g", "$n-term sine series"])

subplot(1,2,2)

semilogy(1:2:n, abs(b[1:2:n]), "bo-")

xlabel(L"n")

ylabel(L"coefficient $|b_n|$")

end

end

Interact.Options{:SelectionSlider,Int64}(Signal{Int64}(19, nactions=1),"n",19,"19",Interact.OptionDict(DataStructures.OrderedDict("1"=>1,"3"=>3,"5"=>5,"7"=>7,"9"=>9,"11"=>11,"13"=>13,"15"=>15,"17"=>17,"19"=>19...),Dict(11=>"11",21=>"21",7=>"7",9=>"9",25=>"25",35=>"35",29=>"29",19=>"19",17=>"17",37=>"37"...)),Any[],Any[],true,"horizontal")

Out[7]:

2 Supplementary material

The following material goes a bit beyond 18.06 (see e.g. 18.303), but it is provided as a supplement.

2.1 Solving the heat/diffusion equation

If we have the heat equation ∂2u
∂x2 = ∂u

∂t , with Dirichlet boundary conditions u(0, t) = u(1, t) = 0, and initial
condition u(x, 0) = f(x), we can solve the equation by expanding u(x, t) in a Fourier sine series. From class:

• u(x, t) =
∑∞
n=0 bn sin(nπx)e−(nπ)

2t

where bn are the sine-series coefficients of the initial condition f(x).
Let’s plot this for different times t for the f(x) = 0.5−|x−0.5| from above, using 199 terms in the series:

In [8]: fig = figure()

@manipulate for t in slider(0:0.001:1, value=0.0, label="time t")

withfig(fig) do

plot(x, sinesum(sinecoef(f, 1:199) .* exp(-((1:199)*π).^2 * t), x))

xlabel(L"x")

title("diffusion solution at time $t")

ylim(0,0.5)

end

end
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Interact.Slider{Float64}(Signal{Float64}(0.0, nactions=1),"time t",0.0,0.0:0.001:1.0,"horizontal",true,".3f",true)

Out[8]:

Notice that the sharp kink (the slope discontinuity) “diffuses away” almost immediately, because that
sharp kink is created by the high-frequency sine-series terms that decay very rapidly. After a short while, in
fact, the solution just looks like sin(πx), because it is dominated by the n = 1 term in the series.

2.2 Solving the wave equation

If we have the wave equation ∂2u
∂x2 = ∂2u

∂t2 , with Dirichlet boundary conditions u(0, t) = u(1, t) = 0, and initial
conditions u(x, 0) = f(x) and u̇(x, 0) = 0, we can also solve the equation by expanding u(x, t) in a Fourier
sine series. From class:

• u(x, t) =
∑∞
n=0 bn sin(nπx) cosnπt

where bn are the sine-series coefficients of the initial condition f(x).
Let’s again plot this for different times t for the f(x) = 0.5− |x− 0.5| from above, using 199 terms in the

series:

In [9]: fig = figure()

@manipulate for t in slider(0:0.01:10, value=0.0, label="time t")

withfig(fig) do

plot(x, sinesum(sinecoef(f, 1:199) .* cos(((1:199)*π) * t), x))
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xlabel(L"x")

title("wave solution at time $t")

ylim(-0.5,0.5)

grid()

end

end

Interact.Slider{Float64}(Signal{Float64}(0.0, nactions=1),"time t",0.0,0.0:0.01:10.0,"horizontal",true,".3f",true)

Out[9]:

Now we have an oscillating wave, which bounced up and down between two triangle shapes.
(This may seem unrealistic to you: if you actually stretch a string into a triangle shape and let it go, it

doesn’t retain the sharp kinks seen here. That is due to an effect called dispersion that we are not including
in the wave equation. . . yet.)
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