Transposes

September 7, 2017

1 Transpose, Permutations, and Orthogonality

One special type of matrix for which we can solve problems much more quickly is a permutation matrix, introduced in the previous lecture on $P A=L U$ factorization.

```
In [1]: # construct a permutation matrix P from the permutation vector p
    function permutation_matrix(p)
        P = zeros(Int, length(p),length(p))
        for i = 1:length(p)
            P[i,p[i]] = 1
        end
        return P
    end
Out[1]: permutation_matrix (generic function with 1 method)
In [2]: P = permutation_matrix([2,4,1,5,3])
Out[2]: 5×5 Array{Int64,2}:
    0}11000
    0
    1}0
    0
    0}00<100
In [3]: I[5 = eye(5)
Out[3]: 5\times5 Array{Float64,2}:
```



```
    0.0
    0.0
    0.0
In [4]: P * IT5
Out[4]: 5\times5 Array{Float64,2}:
    0.0}1.
    0.0
    1.0
    0.0
```


The inverse of any permutation matrix P turns out to be its transpose P^{T} : we just swap rows and columns. In Julia, this is denoted P (technically, this is the conjugate transpose, and P. is the transpose, but the two are the same for real-number matrices where complex conjugation does nothing).

```
In [5]: P'
Out[5]: 5×5 Array{Int64,2}:
    0}0010100
    1}0
    0
    0
    0}00<001
In [6]: P'*P
Out[6]: 5\times5 Array{Int64,2}:
    1 0}000
    0}101000
    0
    0}0
    0}0
In [7]: P*P'
Out[7]: 5×5 Array{Int64,2}:
    1 0}000
    0}11000
    0
    0}0
    0
```

The reason this works is that $P^{T} P$ computes the dot products of all the columns of P with all of the columns, and the columns of P are orthonormal (orthogonal with length 1). We say that P is an example of an "orthogonal" matrix or a "unitary" matrix. We will have much to say about such matrices later in 18.06.

2 Transposes and products

Transposes are important in linear algebra because they have a special relationship to matrix and vector products:

$$
(A B)^{T}=B^{T} A^{T}
$$

and hence for a dot product (inner product) $x^{T} y$

$$
x \operatorname{dot}(A y)=x^{T}(A y)=\left(A^{T} x\right)^{T} y=\left(A^{T} x\right) \operatorname{dot} y
$$

We can even turn the second step around and use this as the definition of a transpose: a transpose is what "moves" a matrix from one side to the other of a dot product.

In [8]: C $=\operatorname{rand}(-9: 9,4,4)$
$\mathrm{D}=\operatorname{rand}(-9: 9,4,4)$
$(\mathrm{C} * \mathrm{D})^{\prime}==\mathrm{D}^{\prime} * \mathrm{C}^{\prime}$
Out [8]: true

3 Transposes and inverses

From the above property, we have:

$$
\left(A A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}=I^{T}=I
$$

and it follows that:

$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}
$$

The transpose of the inverse is the inverse of the transpose.

```
In [9]: A = [\begin{array}{llllll}{4}&{-2}&{-7}&{-4}&{-8}\end{array})
    9
    -2
    9
    -1
Out[9]: 5×5 Array{Int64,2}:
    4
    9
    -2
        9
    -1
In [10]: inv(A')
Out[10]: 5 < 5 Array{Float64,2}:
            0.0109991 0.131989 -0.235564 -0.301558 0.2044
            0.529789 0.35747 -0.179652 -0.69172 0.678582
    -0.908341 -0.900092 0.370302 1.48701 
    -0.635197 -0.622365 0.353804 1.16499 -1.05408
    -0.0879927 -0.055912 -0.11549 0.0791323 0.0314696
In [11]: inv(A)'
Out[11]: 5\times5 Array{Float64,2}:
\begin{tabular}{lllll}
0.0109991 & 0.131989 & -0.235564 & -0.301558 & 0.2044 \\
0.529789 & 0.35747 & -0.179652 & -0.69172 & 0.678582 \\
-0.908341 & -0.900092 & 0.370302 & 1.48701 & -1.29667 \\
-0.635197 & -0.622365 & 0.353804 & 1.16499 & -1.05408 \\
-0.0879927 & -0.055912 & -0.11549 & 0.0791323 & 0.0314696
\end{tabular}
```

As expected, they match!

4 Transposes and LU factors

If $A=L U$, then $A^{T}=U^{T} L^{T}$. Note that U^{T} is lower triangular, and L^{T} is upper trangular. That means, that once we have the LU factorization of A, we immediately have a similar factorization of A^{T}.

```
In [12]: L, U,p = lu(A)
Out[12]: (
    [1.0 0.0 ... 0.0 0.0; 1.0 1.0 ... 0.0 0.0; ... ; -0.111111 0.410256 ... 1.0 0.0; -0.222222 -0.
    [9.0 -6.0 .. -1.0 -5.0; 0.0 13.0 ... 6.0 -3.0; ... ; 0.0 0.0 ... 8.67894 9.95297; 0.0 0.0 ...
    [2,4,1,5,3])
In [13]: L'
Out[13]: 5\times5 Array{Float64,2}:
\begin{tabular}{lllll}
1.0 & 1.0 & 0.444444 & -0.111111 & -0.222222 \\
0.0 & 1.0 & 0.0512821 & 0.410256 & -0.794872 \\
0.0 & 0.0 & 1.0 & 0.582822 & 0.171779 \\
0.0 & 0.0 & 0.0 & 1.0 & 0.0242696 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{tabular}
```

In [14]: U'
Out [14]: 5×5 Array\{Float64, 2$\}$:

9.0	0.0	0.0	0.0	0.0
-6.0	13.0	0.0	0.0	0.0
-6.0	-3.0	-4.17949	0.0	0.0
-1.0	6.0	-3.86325	8.67894	0.0
-5.0	-3.0	-5.62393	9.95297	-0.771206

In particular, suppose we know the $P A=L U$ factorization for A, but we want to solve $A^{T} x=b$. We can:

- Write $A=P^{T} L U \Longrightarrow A^{T}=U^{T} L^{T} P$
- Substitute this in to $A^{T} x=b$ to obtain $U^{T} L^{T} P x=b$
- Parenthesize and solve from the "outside in": $U^{T}\left(L^{T}(P x)\right)=b$:
- First solve $U^{T} c=b$ for c by forward-substitution
- Then solve $L^{T} d=c$ by backsubstitution
- Then solve $P x=d$ for $x=P^{T} d$ (i.e. just reversing the permutation)

Let's try it:

```
In [15]: b = [4,2,1,-2,3] # "randomly" chosen right-hand side
    A' \ b # correct solution to A[U+1D40]x = b
Out[15]: 5-element Array{Float64,1}:
            1.28873
            6.07363
            -11.9273
            -8.92392
            -0.643141
In [16]: c = U' \ b # forward-substitution
    d = L' \ c # backsubstitution
    permutation_matrix(p)' * d
Out[16]: 5-element Array{Float64,1}:
            1.28873
            6.07363
    -11.9273
        -8.92392
        -0.643141
```

As usual, the lufact (A) object (which encapsulates L, U, and P) does all this for you (in a more efficient way because it makes sure to take advantage of the special structure of these matrices, which we didn't above):

```
In [17]: LU = lufact(A)
    LU'\ b
Out[17]: 5-element Array{Float64,1}:
            1.28873
            6.07363
    -11.9273
    -8.92392
    -0.643141
```


5 Symmetric matrices

A very important type of matrix that arises frequently in real problems (we will have much more to say about this later in the course, after exam 2) is a symmetric matrix: a matrix S that is equal to its transpose $S=S^{T}$ 。

Given any matrix A, we can make a symmetric matrix out of it very easily in two ways: ${ }^{*} A+A^{T}$ (or often we write the "symmetric part" of A as $\frac{A+A^{T}}{2}$). (For square matrices only.) * $A^{T} A$ or $A A^{T}$. (This even works for non-square matrix.)

```
In [18]: S = A' * A
Out[18]: 5\times5 Array{Int64,2}:
\begin{tabular}{rrrrr}
183 & 13 & -166 & 21 & -159 \\
13 & 206 & -58 & 148 & 8 \\
-166 & -58 & 184 & -53 & 146 \\
21 & 148 & -53 & 148 & 41 \\
-159 & 8 & 146 & 41 & 193
\end{tabular}
```

The ordinary LU factorization of a symmetric S, however, seems to have nothing to do with the symmetry of S. Is there any special relationship between L and U in this case?

```
In [19]: L, U = lu(S, Val{false}) # LU without pivoting
Out[19]: (
    [1.0 0.0 ... 0.0 0.0; 0.0710383 1.0 ... 0.0 0.0; ... ; 0.114754 0.714408 ... 1.0 0.0; -0.86885;
    [183.0 13.0 ... 21.0 -159.0; 0.0 205.077 ... 146.508 19.2951; ... ; 0.0 0.0 ... 40.8852 45.711
    [1,2,3,4,5])
```

In [20]: L
Out[20]: 5×5 Array\{Float64,2\}:

1.0	0.0	0.0	0.0	0.0
0.0710383	1.0	0.0	0.0	0.0
-0.907104	-0.225319	1.0	0.0	0.0
0.114754	0.714408	-0.0408412	1.0	0.0
-0.868852	0.0940872	0.265894	1.11804	1.0

In [21]: U
Out[21]: 5×5 Array $\{$ Float64, 2$\}$:

183.0	13.0	-166.0	21.0	-159.0
0.0	205.077	-46.2077	146.508	19.2951
0.0	0.0	23.0093	-0.939727	6.11804
0.0	0.0	0.0	40.8852	45.7112
0.0	0.0	0.0	0.0	0.303428

U and L seem quite different because L has 1's along the diagonal, but U has some other numbers (the pivots). We can extract these with diag(U) in Julia:

```
In [22]: diag(U)
Out[22]: 5-element Array{Float64,1}:
    183.0
    205.077
        23.0093
        40.8852
            0.303428
```

We could make U look more like L if we divided each row of U by these pivots. That corresponds to multiplying $D^{-1} U$, where D is the diagonal matrix of the pivots:

```
In [23]: D = diagm(diag(U)) # diagm makes a diagonal matrix from a 1d array
Out[23]: 5\times5 Array{Float64,2}:
    183.0 0.0 0.0 0.0 0.0
```



```
        lllll
        lllll
```


Since a diagonal matrix just multiplies each row by a single number, the inverse of a diagonal matrix simply divides each row by the reciprocal of that number:

```
In [24]: inv(D)
Out[24]: 5\times5 Array{Float64,2}:
\begin{tabular}{lllll}
0.00546448 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.00487623 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0434607 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0244587 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 3.29568
\end{tabular}
In [25]: inv(D) * U
Out[25]: 5\times5 Array{Float64,2}:
\begin{tabular}{lllll}
1.0 & 0.0710383 & -0.907104 & 0.114754 & -0.868852 \\
0.0 & 1.0 & -0.225319 & 0.714408 & 0.0940872 \\
0.0 & 0.0 & 1.0 & -0.0408412 & 0.265894 \\
0.0 & 0.0 & 0.0 & 1.0 & 1.11804 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{tabular}
```

Wait a minute, now the entries look exactly like those of L, except above the diagonal rather than below. In fact, this is precisely the transpose of L :

In [26]: L'
Out [26]: 5×5 Array $\{$ Float 64,2$\}$:

1.0	0.0710383	-0.907104	0.114754	-0.868852
0.0	1.0	-0.225319	0.714408	0.0940872
0.0	0.0	1.0	-0.0408412	0.265894
0.0	0.0	0.0	1.0	1.11804
0.0	0.0	0.0	0.0	1.0

Since $D^{-1} U=L^{T}$, we have $U=D L^{T}$, and hence $S=L U=L D L^{T}$.
This fact is so important that it has its own name: we have constructed the LDL [U+1D40] factorization of our symmetric matrix S. This factorization is useful for two reasons:

- It preserves the special structure of a symmetric matrix, which is important if we are to do subsequent algebraic manipulations: $\left(L D L^{T}\right)^{T}=L D L^{T}$.
- Clever implementations can save roughly a factor of two in the number of operations by exploiting the symmetry.

6 Cholesky factorization

Finally, we should mention another very important variation on this theme.
Suppose that we have a symmetric matrix S in which all the pivots are positive. This is called a positive-definite matrix, and turns out to be the case whenever you construct S from $A^{T} A$ or $A A^{T}$ (for real A), as above. We will have much more to say about such matrices later in the course.

In that case, we can take the square roots of the pivots to write $D=K K$ where K is a diagonal matrix of the square roots of the pivots:

```
In [27]: K = diagm(sqrt.(diag(U)))
Out[27]: 5\times5 Array{Float64,2}:
    13.5277 0.0 0.0 0.0 0.0
        lllll
        lllll
        lllll
        0.0 0.0 0.0
In [28]: K*K - D
Out[28]: 5\times5 Array{Float64,2}:
    0.0 0.0 0.0 0.0 0.0
    0.0-2.84217e-14 0.0 0.0 0.0
    0.0 0.0 3.55271e-15 0.0 0.0
    0.0 0.0 0.0 0.0 0.0
    0.0 0.0 0.0 0.0 5.55112e-17
```

Then we can write $S=L D L^{T}=L K K L^{T}=(L K)(L K)^{T}$. The matrix $\hat{L}=L K$ is also a lower-triangular matrix, it is L with the columns scaled by K. So, we can write any symmetric positive-definite (SPD) matrix as:

$$
S=\hat{L} \hat{L}^{T}
$$

This is called the Cholesky factorization of S, and it usually the most efficient way to solve SPD systems (half the operations, and often half the storage, compared to LU). In Julia, it is computed by chol (which returns \hat{L}^{T}) or cholfact:

```
In [29]: chol(S)
Out[29]: 5\times5 UpperTriangular{Float64,Array{Float64,2}}:
\begin{tabular}{ccccc}
13.5277 & 0.960988 & -12.2711 & 1.55236 & -11.7536 \\
. & 14.3205 & -3.22668 & 10.2307 & 1.34738 \\
. &. & 4.7968 & -0.195907 & 1.27544 \\
. &. &. & 6.39416 & 7.14891 \\
. &. &. &. & 0.550843
\end{tabular}
In [30]: (L*K)'
Out[30]: 5 < 5 Array{Float64,2}:
    13.5277 
        lllll
        0.0 0.0 0.0 6.39416 7.14891
        0.0 0.0 0.0 0.0
```

One interesting fact about Cholesky factorization of SPD matrices is that row swaps are never required, even when concerns about roundoff errors are included, so there is no P matrix.

