
Transposes

September 7, 2017

1 Transpose, Permutations, and Orthogonality

One special type of matrix for which we can solve problems much more quickly is a permutation matrix,
introduced in the previous lecture on PA = LU factorization.

In [1]: # construct a permutation matrix P from the permutation vector p

function permutation_matrix(p)

P = zeros(Int, length(p),length(p))

for i = 1:length(p)

P[i,p[i]] = 1

end

return P

end

Out[1]: permutation matrix (generic function with 1 method)

In [2]: P = permutation_matrix([2,4,1,5,3])

Out[2]: 5×5 Array{Int64,2}:
0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

In [3]: I5 = eye(5)

Out[3]: 5×5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0

In [4]: P * I5

Out[4]: 5×5 Array{Float64,2}:
0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0 0.0

The inverse of any permutation matrix P turns out to be its transpose PT : we just swap rows and
columns. In Julia, this is denoted P (technically, this is the conjugate transpose, and P. is the transpose,
but the two are the same for real-number matrices where complex conjugation does nothing).

1

https://en.wikipedia.org/wiki/Transpose


In [5]: P’

Out[5]: 5×5 Array{Int64,2}:
0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

In [6]: P’*P

Out[6]: 5×5 Array{Int64,2}:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

In [7]: P*P’

Out[7]: 5×5 Array{Int64,2}:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The reason this works is that PTP computes the dot products of all the columns of P with all of the
columns, and the columns of P are orthonormal (orthogonal with length 1). We say that P is an example of
an “orthogonal” matrix or a “unitary” matrix. We will have much to say about such matrices later in 18.06.

2 Transposes and products

Transposes are important in linear algebra because they have a special relationship to matrix and vector
products:

(AB)T = BTAT

and hence for a dot product (inner product) xT y

x dot (Ay) = xT (Ay) = (ATx)T y = (ATx) dot y

We can even turn the second step around and use this as the definition of a transpose: a transpose is what
“moves” a matrix from one side to the other of a dot product.

In [8]: C = rand(-9:9, 4,4)

D = rand(-9:9, 4,4)

(C*D)’ == D’*C’

Out[8]: true

3 Transposes and inverses

From the above property, we have:

(AA−1)T = (A−1)TAT = IT = I

and it follows that:
(A−1)T = (AT )−1

The transpose of the inverse is the inverse of the transpose.

2

https://en.wikipedia.org/wiki/Orthonormality
https://en.wikipedia.org/wiki/Unitary_matrix


In [9]: A = [4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6]

Out[9]: 5×5 Array{Int64,2}:
4 -2 -7 -4 -8

9 -6 -6 -1 -5

-2 -9 3 -5 2

9 7 -9 5 -8

-1 6 -3 9 6

In [10]: inv(A’)

Out[10]: 5×5 Array{Float64,2}:
0.0109991 0.131989 -0.235564 -0.301558 0.2044

0.529789 0.35747 -0.179652 -0.69172 0.678582

-0.908341 -0.900092 0.370302 1.48701 -1.29667

-0.635197 -0.622365 0.353804 1.16499 -1.05408

-0.0879927 -0.055912 -0.11549 0.0791323 0.0314696

In [11]: inv(A)’

Out[11]: 5×5 Array{Float64,2}:
0.0109991 0.131989 -0.235564 -0.301558 0.2044

0.529789 0.35747 -0.179652 -0.69172 0.678582

-0.908341 -0.900092 0.370302 1.48701 -1.29667

-0.635197 -0.622365 0.353804 1.16499 -1.05408

-0.0879927 -0.055912 -0.11549 0.0791323 0.0314696

As expected, they match!

4 Transposes and LU factors

If A = LU , then AT = UTLT . Note that UT is lower triangular, and LT is upper trangular. That means,
that once we have the LU factorization of A, we immediately have a similar factorization of AT .

In [12]: L,U,p = lu(A)

Out[12]: (

[1.0 0.0 ... 0.0 0.0; 1.0 1.0 ... 0.0 0.0; ... ; -0.111111 0.410256 ... 1.0 0.0; -0.222222 -0.794872 ... 0.0242696 1.0],

[9.0 -6.0 ... -1.0 -5.0; 0.0 13.0 ... 6.0 -3.0; ... ; 0.0 0.0 ... 8.67894 9.95297; 0.0 0.0 ... 0.0 -0.771206],

[2,4,1,5,3])

In [13]: L’

Out[13]: 5×5 Array{Float64,2}:
1.0 1.0 0.444444 -0.111111 -0.222222

0.0 1.0 0.0512821 0.410256 -0.794872

0.0 0.0 1.0 0.582822 0.171779

0.0 0.0 0.0 1.0 0.0242696

0.0 0.0 0.0 0.0 1.0

3



In [14]: U’

Out[14]: 5×5 Array{Float64,2}:
9.0 0.0 0.0 0.0 0.0

-6.0 13.0 0.0 0.0 0.0

-6.0 -3.0 -4.17949 0.0 0.0

-1.0 6.0 -3.86325 8.67894 0.0

-5.0 -3.0 -5.62393 9.95297 -0.771206

In particular, suppose we know the PA = LU factorization for A, but we want to solve ATx = b. We
can:

• Write A = PTLU =⇒ AT = UTLTP
• Substitute this in to ATx = b to obtain UTLTPx = b
• Parenthesize and solve from the “outside in”: UT (LT (Px)) = b:

– First solve UT c = b for c by forward-substitution
– Then solve LT d = c by backsubstitution
– Then solve Px = d for x = PT d (i.e. just reversing the permutation)

Let’s try it:

In [15]: b = [4,2,1,-2,3] # "randomly" chosen right-hand side

A’ \ b # correct solution to A[U+1D40]x = b

Out[15]: 5-element Array{Float64,1}:
1.28873

6.07363

-11.9273

-8.92392

-0.643141

In [16]: c = U’ \ b # forward-substitution

d = L’ \ c # backsubstitution

permutation_matrix(p)’ * d

Out[16]: 5-element Array{Float64,1}:
1.28873

6.07363

-11.9273

-8.92392

-0.643141

As usual, the lufact(A) object (which encapsulates L, U , and P ) does all this for you (in a more
efficient way because it makes sure to take advantage of the special structure of these matrices, which we
didn’t above):

In [17]: LU = lufact(A)

LU’ \ b

Out[17]: 5-element Array{Float64,1}:
1.28873

6.07363

-11.9273

-8.92392

-0.643141

4



5 Symmetric matrices

A very important type of matrix that arises frequently in real problems (we will have much more to say
about this later in the course, after exam 2) is a symmetric matrix: a matrix S that is equal to its transpose
S = ST .

Given any matrix A, we can make a symmetric matrix out of it very easily in two ways: * A + AT (or

often we write the “symmetric part” of A as A+AT

2 ). (For square matrices only.) * ATA or AAT . (This even
works for non-square matrix.)

In [18]: S = A’ * A

Out[18]: 5×5 Array{Int64,2}:
183 13 -166 21 -159

13 206 -58 148 8

-166 -58 184 -53 146

21 148 -53 148 41

-159 8 146 41 193

The ordinary LU factorization of a symmetric S, however, seems to have nothing to do with the symmetry
of S. Is there any special relationship between L and U in this case?

In [19]: L, U = lu(S, Val{false}) # LU without pivoting

Out[19]: (

[1.0 0.0 ... 0.0 0.0; 0.0710383 1.0 ... 0.0 0.0; ... ; 0.114754 0.714408 ... 1.0 0.0; -0.868852 0.0940872 ... 1.11804 1.0],

[183.0 13.0 ... 21.0 -159.0; 0.0 205.077 ... 146.508 19.2951; ... ; 0.0 0.0 ... 40.8852 45.7112; 0.0 0.0 ... 0.0 0.303428],

[1,2,3,4,5])

In [20]: L

Out[20]: 5×5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0

0.0710383 1.0 0.0 0.0 0.0

-0.907104 -0.225319 1.0 0.0 0.0

0.114754 0.714408 -0.0408412 1.0 0.0

-0.868852 0.0940872 0.265894 1.11804 1.0

In [21]: U

Out[21]: 5×5 Array{Float64,2}:
183.0 13.0 -166.0 21.0 -159.0

0.0 205.077 -46.2077 146.508 19.2951

0.0 0.0 23.0093 -0.939727 6.11804

0.0 0.0 0.0 40.8852 45.7112

0.0 0.0 0.0 0.0 0.303428

U and L seem quite different because L has 1’s along the diagonal, but U has some other numbers (the
pivots). We can extract these with diag(U) in Julia:

In [22]: diag(U)

Out[22]: 5-element Array{Float64,1}:
183.0

205.077

23.0093

40.8852

0.303428

5

https://en.wikipedia.org/wiki/Symmetric_matrix


We could make U look more like L if we divided each row of U by these pivots. That corresponds to
multiplying D−1U , where D is the diagonal matrix of the pivots:

In [23]: D = diagm(diag(U)) # diagm makes a diagonal matrix from a 1d array

Out[23]: 5×5 Array{Float64,2}:
183.0 0.0 0.0 0.0 0.0

0.0 205.077 0.0 0.0 0.0

0.0 0.0 23.0093 0.0 0.0

0.0 0.0 0.0 40.8852 0.0

0.0 0.0 0.0 0.0 0.303428

Since a diagonal matrix just multiplies each row by a single number, the inverse of a diagonal matrix
simply divides each row by the reciprocal of that number:

In [24]: inv(D)

Out[24]: 5×5 Array{Float64,2}:
0.00546448 0.0 0.0 0.0 0.0

0.0 0.00487623 0.0 0.0 0.0

0.0 0.0 0.0434607 0.0 0.0

0.0 0.0 0.0 0.0244587 0.0

0.0 0.0 0.0 0.0 3.29568

In [25]: inv(D) * U

Out[25]: 5×5 Array{Float64,2}:
1.0 0.0710383 -0.907104 0.114754 -0.868852

0.0 1.0 -0.225319 0.714408 0.0940872

0.0 0.0 1.0 -0.0408412 0.265894

0.0 0.0 0.0 1.0 1.11804

0.0 0.0 0.0 0.0 1.0

Wait a minute, now the entries look exactly like those of L, except above the diagonal rather than below.
In fact, this is precisely the transpose of L:

In [26]: L’

Out[26]: 5×5 Array{Float64,2}:
1.0 0.0710383 -0.907104 0.114754 -0.868852

0.0 1.0 -0.225319 0.714408 0.0940872

0.0 0.0 1.0 -0.0408412 0.265894

0.0 0.0 0.0 1.0 1.11804

0.0 0.0 0.0 0.0 1.0

Since D−1U = LT , we have U = DLT , and hence S = LU = LDLT .
This fact is so important that it has its own name: we have constructed the LDL[U+1D40] factorization

of our symmetric matrix S. This factorization is useful for two reasons:

• It preserves the special structure of a symmetric matrix, which is important if we are to do subsequent
algebraic manipulations: (LDLT )T = LDLT .

• Clever implementations can save roughly a factor of two in the number of operations by exploiting the
symmetry.

6



6 Cholesky factorization

Finally, we should mention another very important variation on this theme.
Suppose that we have a symmetric matrix S in which all the pivots are positive. This is called a

positive-definite matrix, and turns out to be the case whenever you construct S from ATA or AAT (for real
A), as above. We will have much more to say about such matrices later in the course.

In that case, we can take the square roots of the pivots to write D = KK where K is a diagonal matrix
of the square roots of the pivots:

In [27]: K = diagm(sqrt.(diag(U)))

Out[27]: 5×5 Array{Float64,2}:
13.5277 0.0 0.0 0.0 0.0

0.0 14.3205 0.0 0.0 0.0

0.0 0.0 4.7968 0.0 0.0

0.0 0.0 0.0 6.39416 0.0

0.0 0.0 0.0 0.0 0.550843

In [28]: K*K - D

Out[28]: 5×5 Array{Float64,2}:
0.0 0.0 0.0 0.0 0.0

0.0 -2.84217e-14 0.0 0.0 0.0

0.0 0.0 3.55271e-15 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 5.55112e-17

Then we can write S = LDLT = LKKLT = (LK)(LK)T . The matrix L̂ = LK is also a lower-triangular
matrix, it is L with the columns scaled by K. So, we can write any symmetric positive-definite (SPD) matrix
as:

S = L̂L̂T

This is called the Cholesky factorization of S, and it usually the most efficient way to solve SPD systems
(half the operations, and often half the storage, compared to LU). In Julia, it is computed by chol (which
returns L̂T ) or cholfact:

In [29]: chol(S)

Out[29]: 5×5 UpperTriangular{Float64,Array{Float64,2}}:
13.5277 0.960988 -12.2711 1.55236 -11.7536

· 14.3205 -3.22668 10.2307 1.34738

· · 4.7968 -0.195907 1.27544

· · · 6.39416 7.14891

· · · · 0.550843

In [30]: (L*K)’

Out[30]: 5×5 Array{Float64,2}:
13.5277 0.960988 -12.2711 1.55236 -11.7536

0.0 14.3205 -3.22668 10.2307 1.34738

0.0 0.0 4.7968 -0.195907 1.27544

0.0 0.0 0.0 6.39416 7.14891

0.0 0.0 0.0 0.0 0.550843

One interesting fact about Cholesky factorization of SPD matrices is that row swaps are never re-
quired, even when concerns about roundoff errors are included, so there is no P matrix.

7

https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Cholesky_decomposition

