
MIT 18.06 Exam 1, Spring 2017 - Solutions

Problem 1:
Suppose A is the 6× 6 matrix

A =


1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 1

 .

(a) What is the rank of A? (Hint: doing elimination is okay. You should notice
a simple pattern.)

(b) Give a basis for N(A).

(c) For what b =


b1
b2
b3
b4
b5
b6

 does Ax = b have a solution? Give an equation in

terms of the entries b1, . . . , b6.

Hint: from class, if we do the same row operations to transform b c as we
did for Gaussian elimination to transform A  U (or R), for b ∈ C(A) we
needed c to be in the rows where U is . For
this A, the row operations have a simple pattern you should have noticed
above.

Solution:

(a) We do elimination by iteratively adding to every line the one immediately
above. The end result is

U =


1 −1
0 1 −1

0 1 −1
0 1 −1

0 1 −1
0 0

 .

1



(Don’t forget that the lower-right corner of A is a 1, not a 2!) Since there
are five pivots, the rank of A is 5.

(b) Using the result of the elimination, we see that a vector

x1

...
x6

 is in the null

space if and only if it satisfies the equations
x1 − x2 = 0

x2 − x3 = 0
...
x5 − x6 = 0

.

That is, if and only if all of its components are equal. So a basis for the null
space is given by the vector 

1
1
1
1
1
1

 .

Alternatively, you could do elimination upwards to transform the matrix to
rref form: add each row to the row above it, working from the bottom up,
to obtain:

R =


1 −1

1 −1
1 −1

1 −1
1 −1

0

 .

From the free column, we can read off the same (1,1,1,1,1,1) nullspace vector
as above.

(c) From class, if we do the same row operations to transform b  c as we
did for Gaussian elimination to transform A  U (or R), for b ∈ C(A) we
needed c to be zero in the rows where U is zero. In this particular case
we need the last component of L−1b to be zero. But after doing the row
operations, the last component is given by the sum of the components of b.
That is a vector is in the column space of A if and only if the sum of its
components is zero:

b1 + b2 + b3 + b4 + b5 + b6 = 0 .

Alternative solution: We could also find the column space of A more
easily: one quick inspection reveals immediately that the sum of the entries
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of each column is zero, so the column space is contained in the dimension 5
subspace

{∑6
i=1 xi = 0

}
. But since it has dimension 5 itself, it must be equal to

it. Another alternative approach is possible if you know that C(A) is orthogonal
to the left nullspace: since A is symmetric then C(A) is orthogonal to N(A) =
N(AT ), so b must be orthogonal to our (1,1,1,1,1,1) vector from above; however,
this technique was not covered in class until after the exam.

Problem 2:
Circle which of the following statements might possibly be true. Give an example
of a possible matrix A for each possibly true statement.

(a) Ax = b has a unique solution for a 5× 3 matrix A.

(b) Ax = b has a unique solution for a 3× 5 matrix A.

(c) Ax = b is not solvable for any b.

(d) Ax = b is not solvable for any b 6= 0.

Solution:

(a) Possible. We just need an example where A has full column rank, and
the easiest way to get independent columns is just to use orthogonal unit
vectors (columns of I):

A =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 b =


1
0
0
0
0

 .

(b) Impossible. Since the rank is at most 3 (it is a subspace of R3), the
nullspace has dimension at least 5 − 3 = 2. So if there is a solution, there
are infinitely many.

(c) Impossible. Ax = 0 is always solvable, by x = 0.

(d) Possible. Let A be the zero matrix. Then Ax = 0 for each x and so Ax = b
is not solvable for any b 6= 0.

Problem 3:
Suppose that we do column operations on the matrix A to transform it to
another matrix B:  2 4 6

3 1 10
0 −1 3


︸ ︷︷ ︸

A

 

 2 0 0
3 −5 1
0 −1 3


︸ ︷︷ ︸

B

.
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For example, we subtracted twice the first column of A from the second column
of A to get the second column of B.

(a) Write B as a matrix product involving A and some other matrix.

(b) Which of C(A) and N(A) are the same as C(B) and N(B), if any? (No
computation should be required! You don’t have to compute these subspaces
explicitly !)

Solution:

(a) Row operations are multiplications on the *left* by an invertible elimination
matrix; similarly, column operations correspond to multiplications on the
*right* by an invertible elimination matrix. So, we can write B = AE via
an elimination matrix E. It was given that E should subtract twice the
first column of A from the second column. To get a zero in the upper-right
corner, we also need to subtract three times the first column from the third
column. This leads to:

B = A

1 −2 −3
0 1 0
0 0 1


︸ ︷︷ ︸

E

An easy way to see E is just to start with the 3 × 3 identity matrix I and
do the desired column operations, since IE = E.

(b) Since B = AE involves multiplication on the right by an invertible matrix,
we haven’t changed the column space C(B) = C(A). (For any y ∈ C(B),
y = Bx = A(Ex) for some x, and hence y ∈ C(A). Similarly, for any
y ∈ C(A), y = Ax and hence y = B(E−1x) = AEE−1x = Ax is in the
column space of B. We did something very similar in class.) In general,
multiplying A on the right will change the null space, since if x ∈ N(A)
then E−1x (not x) is in N(B): BE−1x = AEE−1x = Ax = 0. However, in
this particular case, the matrix is full rank, so N(B) = N(A) = 0.

Problem 4:
Suppose you are given the PA = LU factorization of an invertible n×n matrix
A. Now, suppose we want to solve(

A B
0 A

)
x = b

for some n × n matrix B, where “0” denotes an n × n block of zeros in the
lower-left corner.
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(a) Suppose we express x =

(
x1

x2

)
, where x1 and x2 are n-component vectors.

Similarly, we express b =
(

b1
b2

)
in terms of n-component vectors b1 and b2.

Write the solution x1 and x2 in terms of P,L, U,B, b1, b2 (or the inverses of
those matrices). Hint: write out two n × n equations involving x1 and x2

first.

(b) Take your answer from (a) and explain how (if you do things in the right
order), you can compute the solution x in ∼ n2 operations (i.e. roughly
proportional to n2).

You can indicate the order of operations by parentheses. For example,
if you have an expression LBb1 in your answer, you could either evaluate
it as (LB)b1 (multiply LB, then multiply by b1) or evaluate it as L(Bb1)
(multiply Bb1, then multiply L by that vector).

Solution:

(a) If we write

x =

(
x1

x2

)
, b =

(
b1
b2

)
,

where x1, x2, b1, b2 are n-dimensional vectors, the system becomes{
Ax1 +Bx2 = b1

Ax2 = b2
.

From the second line, we immediately see that

x2 = U−1(L−1(Pb2)) .

x1 = U−1(L−1(P (b1 −Bx2))) = U−1(L−1(P (b1 −B(U−1(L−1(Pb2))))) .

(b) The key thing is to remember that matrix× vector or T−1 × vector, where
T is upper or lower triangular, both take ∼ n2 operations. Note that to
compute y = T−1x you would not actually invert the matrix T , you would
solve Ty = x by backsubstitution (for upper triangular) or forward substi-
tution (for lower triangular). If we do the operations in the order indicated
by the parentheses above, then every operation is of this form and hence
the whole computation takes an operation count proportional to n2.

The key thing to avoid here is (a) explicit matrix inversion and (b) matrix×
matrix operations, e.g. computing BU−1 or U−1L−1 as matrix products.
These would require ∼ n3 operations.
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