MIT 18.06 Exam 1, Spring 2017

Your name:

Recitation:

problem	score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
total	$/ 100$

Problem 1:

Suppose A is the 6×6 matrix

$$
A=\left(\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & -1 & 2 & -1 & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 1
\end{array}\right)
$$

(a) What is the rank of A ? (Hint: doing elimination is okay. You should notice a simple pattern.)
(b) Give a basis for $N(A)$.
(c) For what $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6}\end{array}\right)$ does $A x=b$ have a solution? Give an equation in terms of the entries b_{1}, \ldots, b_{6}.

Hint: from class, if we do the same row operations to transform $b \rightsquigarrow c$ as we did for Gaussian elimination to transform $A \rightsquigarrow U$ (or R), for $b \in C(A)$ we needed c to be in the rows where U is
For this A, the row operations have a simple pattern you should have noticed above.
(blank page for your work if you need it)

Problem 2:

Circle which of the following statements might possibly be true. Give an example of a possible matrix A for each possibly true statement.
(a) $A x=b$ has a unique solution for a 5×3 matrix A.
(b) $A x=b$ has a unique solution for a 3×5 matrix A.
(c) $A x=b$ is not solvable for $a n y b$.
(d) $A x=b$ is not solvable for any $b \neq 0$.
(blank page for your work if you need it)

Problem 3:

Suppose that we do column operations on the matrix A to transform it to another matrix B :

$$
\underbrace{\left(\begin{array}{ccc}
2 & 4 & 6 \\
3 & 1 & 10 \\
0 & -1 & 3
\end{array}\right)}_{A} \rightsquigarrow \underbrace{\left(\begin{array}{ccc}
2 & 0 & 0 \\
3 & -5 & 1 \\
0 & -1 & 3
\end{array}\right)}_{B} .
$$

For example, we subtracted twice the first column of A from the second column of A to get the second column of B.
(a) Write B as a matrix product involving A and some other matrix.
(b) Which of $C(A)$ and $N(A)$ are the same as $C(B)$ and $N(B)$, if any? (No computation should be required! You don't have to compute these subspaces explicitly!)
(blank page for your work if you need it)

Problem 4:

Suppose you are given the $P A=L U$ factorization of an invertible $n \times n$ matrix A. Now, suppose we want to solve

$$
\left(\begin{array}{cc}
A & B \\
0 & A
\end{array}\right) x=b
$$

for some $n \times n$ matrix B, where " 0 " denotes an $n \times n$ block of zeros in the lower-left corner.
(a) Suppose we express $x=\binom{x_{1}}{x_{2}}$, where x_{1} and x_{2} are n-component vectors. Similarly, we express $b=\binom{b_{1}}{b_{2}}$ in terms of n-component vectors b_{1} and b_{2}.

Write the solution x_{1} and x_{2} in terms of P, L, U, B, b_{1}, b_{2} (or the inverses of those matrices). Hint: write out two $n \times n$ equations involving x_{1} and x_{2} first.
(b) Take your answer from (a) and explain how (if you do things in the right order), you can compute the solution x in $\sim n^{2}$ operations (i.e. roughly proportional to n^{2}).

You can indicate the order of operations by parentheses. For example, if you have an expression $L B b_{1}$ in your answer, you could either evaluate it as $(L B) b_{1}$ (multiply $L B$, then multiply by b_{1}) or evaluate it as $L\left(B b_{1}\right)$ (multiply $B b_{1}$, then multiply L by that vector).
(blank page for your work if you need it)

