MIT 18.06 Exam 2, Spring 2017

Your name:

Recitation:

problem	score
1	$/ 33$
2	$/ 33$
3	$/ 34$
total	$/ 100$

Problem 1:

You are given the 6×6 matrix. (Not quite the same matrix as in exam 1: there is a 2 in the lower-right corner rather than a 1.)

$$
A=\left(\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & -1 & 2 & -1 & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)
$$

(a) Find the determinant of A. (Hint: elimination.)
(b) What is the projection matrix onto $C(A)$?
(c) If you perform Gram-Schmidt orthogonalization on the columns of A, what is the pattern of nonzero entries in the resulting orthogonal matrix Q ? (Don't waste your time actually working out the numbers: just put x's where the nonzero entries will be.)
(blank page for your work if you need it)

Problem 2:

The equations of two lines in \mathbb{R}^{n} are

$$
\begin{aligned}
& \vec{y}_{1}\left(x_{1}\right)=\vec{a}_{1} x_{1}+\vec{b}_{1} \\
& \vec{y}_{2}\left(x_{2}\right)=\vec{a}_{2} x_{2}+\vec{b}_{2}
\end{aligned}
$$

where $\vec{a}_{1}, \vec{a}_{2}, \vec{b}_{1}, \vec{b}_{2} \in \mathbb{R}^{n}$ and x_{1} and x_{2} are scalars.
Write down a 2×2 system $C \vec{x}=\vec{d}$ of linear equations for $\vec{x}=\left(x_{1}, x_{2}\right)$ whose solution gives the $\left(x_{1}, x_{2}\right)$ that minimizes the distance between the two lines. That is, find the entries of C and d (in terms of $\vec{a}_{1}, \vec{a}_{2}, \vec{b}_{1}, \vec{b}_{2}$) so that $\vec{x}=C^{-1} d$ solves:

$$
\min _{x_{1}, x_{2}}\left\|\vec{y}_{1}\left(x_{1}\right)-\vec{y}_{2}\left(x_{2}\right)\right\| .
$$

Hint: write $\vec{y}_{1}\left(x_{1}\right)-\vec{y}_{2}\left(x_{2}\right)$ in terms of matrix/vector operations on \vec{x} first.
(blank page for your work if you need it)

Problem 3:

(a) If P projects onto $C\left(A^{T}\right)$, the row space of some $m \times n$ matrix A, then $(I-P)^{2} x$ for any $x \in \mathbb{R}^{n}$ gives a vector in which fundamental subspace?
(b) If A is a symmetric matrix and P is the projection matrix onto $N(A)$, what is $P A$?
(c) If P is a permutation matrix, what is its QR factorization?
(d) If A and B are two matrices such that $A^{T} B=0$, with $Q R$ factorizations $A=Q_{A} R_{A}$ and $B=Q_{B} R_{B}$, write down the QR factorization of the matrix $C=\left(\begin{array}{ll}A & B\end{array}\right)$ (that is, C is the columns of A followed by the colums of B) in terms of $Q_{A}, Q_{B}, R_{A}, R_{B}$. (Hint: what is $Q_{A}^{T} Q_{B}$?)
(blank page for your work if you need it)

