MIT 18.06 Exam 3, Spring 2017

Your name:

Recitation:

problem	score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
total	$/ 100$

Problem 1:

The following matrix M is a Markov matrix (its columns sum to 1):

$$
M=\left(\begin{array}{lll}
0.3 & 0.4 & 0.5 \\
0.3 & 0.4 & 0.3 \\
0.4 & 0.2 & 0.2
\end{array}\right)
$$

and its steady-state eigenvector $(\lambda=1)$ is

$$
s=\left(\begin{array}{c}
7 / 18 \\
1 / 3 \\
5 / 18
\end{array}\right)
$$

Recall from class that multiplying a vector x by M does not change the sum of the components. That is, the sum $=o^{T} x$, where $o=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$, is conserved:

$$
o^{T} M x=o^{T} x=x_{1}+x_{2}+x_{3}
$$

for any $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. (The steady-state vector s above was normalized so that $o^{T} s=1$.)
(a) If we let $x=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$, what vector does $M^{n} x$ approach as $n \rightarrow \infty$?
(b) For the same x, in what direction does $\left(M^{T}\right)^{n} x$ point as $n \rightarrow \infty$. (You don't have to give the correct magnitude, just give a vector in the correct direction.)
(c) Multiplying $M^{T} x$ does not conserve the sum of the components of x, unlike $M x$. However, it does conserve some linear combination of the components: there is some vector $v \neq 0$ such that

$$
v^{T} M^{T} x=v^{T} x
$$

for all x. What is v ? (Hint: this is easy if you understand why $o^{T} M x=$ $o^{T} x$ as stated above.)
(blank page for your work if you need it)

Problem 2:

Suppose that A is a 3×3 real-symmetric matrix with eigenvalues $\lambda_{1}=1$, $\lambda_{2}=-1, \lambda_{3}=-2$, and corresponding eigenvectors x_{1}, x_{2}, x_{3}. You are given that $x_{1}=(1,0,1)$.
(a) Give an approximate solution at $t=100$ to $\frac{d x}{d t}=A x$ for $x(0)=(1,1,0)$. (You should give a specific vector, even if the vector is very big or very small - an answer of " ≈ 0 " or " $\approx \infty$ " is not acceptable.)
(b) If $x_{2}=(0,1,0)$, what is x_{3} ? (You should not need your answer here to solve the previous part!)
(c) If instead we solve $\frac{d x}{d t}=\left(\alpha I-A^{3}\right) x$ for some complex number α and the same $x(0)$, give a possible value of α for which the solutions $x(t)$ approach oscillating solutions (but not decaying or growing!) for large t.
(blank page for your work if you need it)

Problem 3:

The real 3×3 matrix A is positive-definite, and the real 3×4 matrix B is rank 3:

$$
B=\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
2 & -1 & 1 & 2 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

The nullspace $N(B)$ is spanned by the vector $x_{0}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$.
(a) How many zero, positive, and negative eigenvalues does $B^{T} A B$ have? (Hint: what happens if you plug an eigenvector into $x^{T}\left(B^{T} A B\right) x$?)
(b) For which $\operatorname{sign}(+$ or -$)$ does $\frac{d x}{d t}= \pm B^{T} A B x$ have solutions that approach a constant steady state for any initial condition $x(0)$?
(c) For the sign you chose in the previous part, what is $x(\infty)$ for $x(0)=$ $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ?$
(blank page for your work if you need it)

Problem 4:

True or false. Give a reason if true (one sentence and/or one equation should suffice), or a counterexample if false.
(a) A singular matrix A cannot be similar to a non-singular matrix B.
(b) Any positive markov matrix M (that is, positive entries) must also be positive definite.
(c) If $A=Q R$ is the QR factorization of a real (square) matrix A, then the matrix $R Q$ has the same eigenvalues as A.
(d) A and $e^{A^{3}}$ have the same eigenvalues.
(e) A and $e^{A^{3}}$ have the same eigenvectors.

