
MIT 18.06 Final Exam Solutions, Spring 2017

Problem 1:
For some real matrix A, the following vectors form a basis for its column space
and null space:

C(A) = span〈

 1
0
1

 ,

 1
1
−1

〉,

N(A) = span〈


1
−1
0
0
0

 ,


1
1
0
0
1

 ,


2
1
−1
0
0

〉.
(a) What is the size m×n of A, what is its rank, and what are the dimensions

of C(AT ) and N(AT )?

Solution: A must be a 3 × 5 matrix of rank 2 (the dimension of the
column space). C(AT ) must have the same dimension 2, and N(AT ) must
have dimension 3− 2 = 1.

(b) Give one possible matrix A with this C(A) and N(A).

Solution: We have to make all the columns out of the two C(A) vec-
tors. Let’s make the first column (1, 0, 1). From the first nullspace vector,
the second column must then be (1, 0, 1); from the second nullspace vec-
tor, the fifth column must be (−2, 0,−2); from the third nullspace vector,
the third column must be (3, 0, 3). The fourth column must be indepen-
dent and give us the other C(A) vector, so we can just make it (1, 1,−1).
Hence, our A matrix is

A =

 1 1 3 1 −2
0 0 0 1 0
1 1 3 −1 −2

 .

Of course, there are many other possible solutions.
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(c) Give a right-hand side b for which Ax = b has a solution, and give all the
solutions x for your A from the previous part. (Hint: you should not have
to do Gaussian elimination.)

Solution: we just need b to be in the column space, e.g. b = (1, 0, 1).
Then a particular solution is (1, 0, 0, 0, 0), and to get all possible solutions
we just need to add any multiples of the nullspace vectors:

x =


1
0
0
0
0

+ c1


1
−1
0
0
0

+ c2


1
1
0
0
1

+ c3


2
1
−1
0
0


for any scalars c1, c2, c3. (Again, there are many possible solutions to this
part.)

(d) For b =

 1
0
0

, the equation Ax = b as no solutions. Instead, give

another right-hand side b̂ for which Ax̂ = b̂ is solvable and yields a
least-square solution x̂ (i.e. x̂ minimizes ‖Ax − b‖). b̂ must be the

of b onto the subspace .
(Hint: if you find yourself solving a 4×4 system of equations, you are miss-
ing a way to do it much more easily. The answer should not depend on
your choice of A matrix in part b.)

Solution: We just need to project b onto C(A). If you look closely,
you’ll notice that the basis of C(A) given above is actually orthogonal
(but not orthonormal), so the orthogonal projection is easy. If we call the
two basis vectors a1 and a2, then the projection is

b̂ =
a1a

T
1

aT1 a1
b+

a2a
T
2

aT2 a2
b = a1

1

2
+ a2

1

3
=

 5/6
1/3
1/6

 .

We could also have used the projection formula Pb for P = Â(ÂT Â)−1ÂT

where Â =
(
a1 a2

)
=

 1 1
0 1
1 −1

. This is pretty easy, too, since

ÂT Â =

(
2 0
0 3

)
, making it easy to invert (it is diagonal because the

basis is orthogonal).

Problem 2:
Suppose you have 100 data points (xi, yi) for i = 1, 2, . . . , 100, and you want to
fit them to a power-law curve y(x) = axb for some a and b. Equivalently, you
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want to fit log yi to log y = log(axb) = b log x + log a. Describe how to find a
and b to minimize the sum of the squares of the errors:

s(a, b) =

100∑
i=1

(b log xi + log a− log yi)
2
.

Write down a 2 × 2 system of equations for the vector z =

(
b

log a

)
; you

can leave your equations in the form of a product of matrices/vectors as long
as you say what the matrices/vectors are. (Hint: rewrite it as an 18.06-style
least-squares problem with matrices/vectors.)

Solution: In linear-algebra form, we write s = ‖Az − b‖2 where A is the
100× 2 matrix

A =


log x1 1
log x2 1

...
...

log x100 1


and b is the 100-component vector

b =


log y1
log y2

...
log y100

 .

Then minimizing s over z is just an ordinary least-squares problem, and the
solution is given by the normal equations ATAz = AT b, which is a 2× 2 system
of equations.

Problem 3:
Suppose that 4 × 4 real matrix A =

(
a1 a2 a3 a4

)
has four orthogonal

but not orthonormal columns ai with lengths ‖a1‖ = 2, ‖a2‖ = 1, ‖a3‖ = 3,
‖a4‖ = 2. (That is, aTi aj = 0 for i 6= j.)

(a) Write an explicit expression for the solution x to Ax = b in terms of dot
products, additions, and multiplications by scalars.

Solution: All we are doing is writing b = a1x1 + a2x2 + a3x3 + a4x4,
i.e. we are writing b in the basis of the columns of A. Since this is an
orthogonal basis, we have seen many times in class that we just need to
take dot products: aTi b = aTi aixi for i = 1, 2, 3, 4, so xi = aTi b/a

T
i ai and

x =


aT1 b/a

T
1 a1

aT2 b/a
T
2 a2

aT3 b/a
T
3 a3

aT4 b/a
T
4 a4

 =


aT1 b/4
aT2 b
aT3 b/9
aT4 b/4

 .
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Equivalently, sinceATA is the diagonal matrixD =


aT1 a1

aT2 a2
aT3 a3

aT4 a4

 =


4

1
9

4

 , we have D−1ATA = I, which means that A−1 =

D−1AT , and hence x = D−1AT b. If you write it out, this is essentially the
same as the answer above (note that inverting a diagonal matrix is easy).

(b) Write A as a sum of four rank-1 matrices.

Solution: If you understand how rank-1 matrices (outer products) work,

there is a trivial way to do this. If we let e1 =


1
0
0
0

, e2 =


0
1
0
0

,

e3 =


0
0
1
0

, and e4 =


0
0
0
1

, then

A = a1e
T
1 + a2e

T
2 + a3e

T
3 + a4e

T
4 .

(c) If we write the matrix B = A


3

6
2

3

 , then what is BTB?

Hence, for any x 6= 0, ‖Bx‖‖x‖ = .

Solution: If B = AS where S is the diagonal matrix above, then BTB =
STATAS = SDS where D is the diagonal matrix above, and multiplying
out SDS gives

BTB =


4× 32

62

9× 22

4× 32

 = 36I.

(That is, B/6 is actually a unitary matrix.) Hence ‖Bx‖ =
√

(Bx)H(Bx) =√
xHBTBx =

√
36xHx = 6‖x‖, and ‖Bx‖‖x‖ = 6.

(d) Write the SVD A = UΣV T : explicitly give the singular values σ (diago-
nal of Σ) and the singular vectors (columns of U, V , possibly in terms of
the columns ai). Hint: what is ATA, and what are its eigenvectors (this
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should give you either U or V ) and eigenvalues (related somehow to σ)?
Recall also from homework that AV = UΣ.

Solution:

Σ =


2

1
3

2


with

U =
(

a1
2

a2
1

a3
3

a4
2

)
and V = I. There are many ways to see this. The easiest way is by
inspection if you really understand the SVD: the columns of A are al-
ready orthogonal, so we just need to normalize them to length 1 to get
an orthonormal basis U of the column space, where we recover A just by
multiplying by the diagonal matrix Σ of the lengths. But, if we want to
do it the “long way,” it is not too bad either.

The “long way” is to first find the eigenvalues and eigenvectors of ATA =
V ΣTΣV T . The nonzero eigenvalues are the σ2

i , and the corresponding
eigenvectors are the columns of V . But this is easy, since ATA is diago-
nal! Hence we see that the singular values σ are just the lengths 2, 1, 3, 2
of the four columns of A. The eigenvectors of a diagonal matrix are just
V = I. Then we get U from AV Σ−1: that is (as we saw in homework),
for each right singular vector vi and nonzero singular value σi, there is a
corresponding left singular vector ui = Avi/σi. But since V = I and the
σi are just the lengths of the four columns of A, we immediately see that
U consists of the columns of A normalized by their lengths.

Problem 4:
Suppose that A and B are two real m×m matrices, and B is invertible.

(a) Circle which (if any) of the following must be true: C(A) = C(AB),
C(A) = C(BA), N(A) = N(AB), N(A) = N(BA).

Solution: C(A) = C(AB) and N(A) = N(BA).

Proof (not required): Since B is invertible, if y ∈ C(A) then y = Ax
for some x and y = ABz for z = B−1x , hence y ∈ C(AB). Similarly, if
Ax = 0 [x ∈ N(A)] then BAx = 0 [x ∈ N(BA)] and vice versa (multi-
plying both sides by B−1). However, C(A) 6= C(BA): a counterexample

is A =

(
1 0
0 0

)
and B =

(
0 1
1 0

)
, for which C(A) is spanned by

(1, 0) and C(BA) is spanned by (0, 1). Similarly, N(A) 6= N(AB) for the
same counterxample: N(A) is spanned by (0, 1) and N(AB) is spanned
by (1, 0).
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(b) Circle which (if any) of the following matrices must be symmetric: ABBA,
ATBBTA, ATBABT , ATBB−1A, AT (BT )−1B−1A?

Solution: ATBBTA, ATBB−1A = ATA , andAT (BT )−1B−1A = AT (B−1)TB−1A
are symmetric, as can easily be seen by applying the transpose formula
(the transpose of the product is the product of the transposes in reverse
order).

(c) If B is a projection matrix (as well as invertible), then AB = .

Solution: An invertible projection matrix must be B = I , hence AB =
A.

(d) Do AB and BA have the same eigenvalues? Give a reason if true, a
counter-example if false.

Solution: They are similar (AB = B−1BAB), and hence have the same
eigenvalues.

(e) Suppose A has rank r. Say as many true things as possible about the
eigenvalues of C = ATBTBA that would not necessarily be true if C were
just a random m×m matrix.

It is real-symmetric, so the eigenvalues of C are real. N(ATBTBA) =
N(A) so C has exactly m − r zero eigenvalues, and it is positive semi-
definite so the remaining r eigenvalues are positive.

Problem 5:
You have a matrix A with the factorization:

A =

 1
3 2
1 −1 2


︸ ︷︷ ︸

B

 1 3 1
2 −1

2


︸ ︷︷ ︸

C=BT

.

(a) What is the product of the 3 eigenvalues of A?

Solution: The product of the eigenvalues is detA = detB × detC. B
and C are triangular matrices so their determinants are just the products
of their diagonals = 1× 2× 2 = 4, hence detA = 42 = 16.

(b) Solve Ax =

 2
4
7

 for x. (Hint: if you find yourself doing Gaussian elim-

ination, you are missing something.)

Solution: The purpose of Gaussian elimination is to factorize A into a
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product of triangular matrices, but this A is already factorized into a prod-
uct of triangular matrices. So, we just need to do one back-substitution
and one forward-substitution step. In particular, since Ax = b = BCx,
we let Cx = y and first solve By = b for y by forward substitution (since
B is upper triangular) and then solve Cx = y for x by backsubstitution.
To solve By = b: 1

3 2
1 −1 2

 y1
y2
y3

 =

 2
4
7

 =⇒ y1 = 2 =⇒ 3y1 + 2y2 = 4
=⇒ y2 = −1

=⇒ y1 − y2 + 2y3 = 7
=⇒ y3 = 2

.

Now that we know y = (2,−1, 2), we solve Cx = y by backsubstitution: 1 3 1
2 −1

2

 x1
x2
x3

 =

 2
−1
2

 =⇒ x3 = 1 =⇒ 2x2 − x3 = −1
=⇒ x2 = 0

=⇒ x1 + 3x2 + x3 = 2
=⇒ x1 = 1

and hence the solution is x = (1, 0, 1).

There are alternative methods. You could multiply out BC to find A = 1 3 1
3 13 1
1 1 6

. If you stare at this matrix for a little while, you might

notice that (2, 4, 7) is the sum of the first and third columns, which im-
mediately gives the solution (this often works in the toy problems of 18.06
where the solutions are almost always small integers). You could, of course,
do Gaussian elimination on A; this works, but is a lot of pointless work
because triangular factors of A were already given to you! You could also
write x = A−1b = C−1B−1b, but if you find yourself explicitly computing
inverse matrices you are almost always doing more work than you should
— you should read an expression like “B−1b” as “solve By = b” (usually
by elimination, but in this case by forward-substitution).

(c) Gaussian elimination (without row swaps) produces an A = LU factor-
ization, but you can tell at a glance that this is not the same as the
factorization above, because L is always a lower-triangular matrix with
1’s on the diagonal. Find the ordinary LU factorization of A (the matri-
ces L and U) by multiplying and/or dividing the factors above with some
diagonal matrix.

Solution: We just write A = BC = BD−1DC where D is the diago-

nal matrix

 1
2

2

. This divides the columns of B by the diagonal
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elements to make them equal to 1:

A =

 1
3 2
1 −1 2

 1
1
2

1
2


︸ ︷︷ ︸

L

 1
2

2

 1 3 1
2 −1

2


︸ ︷︷ ︸

U

=

 1
3 1
1 − 1

2 1

 1 3 1
4 −2

4

 .

Problem 6:
(a) One of of the eigenvalues of

A =

 3 1 4
1 5
1 5

 .

is λ = 3. Find the other two eigenvalues. (Hint: one eigenvalue should
be obvious from inspection of A, since A is . You
shouldn’t need to explicitly write down and solve any cubic equation,
because once you find two eigenvalues you can get the third from the

of A.)

Solution: A is obviously singular (the second and third rows are the
same), so it must have an eigenvalue λ = 0 . The trace is 3 + 1 + 5 = 9
which must be the sum of the eigenvalues, so the third eigenvalue must
be λ = 9− 3− 0 = 6.

(b) For a 4 × 4 matrix B, the polynomial det(B − λI) has three roots λ =
1, 0.4,−0.7. You find that, for some vector x, the vector Bnx is get-
ting longer and longer as n grows. It must be the case that B is a

matrix. Approximately what is ‖B2000x‖/‖B1000x‖?

Solution: The matrix B must be defective. (If it were diagonalizable,
then Bnx would only contain λn terms, which don’t grow since |λ| ≤ 1
here.) It is 4 × 4 with 3 distinct eigenvalues, so one of the eigenvalues
must be a double root, corresponding to a 2× 2 Jordan block and a single
additional Jordan vector to supplement the three eigenvectors. For such
a defective matrix, there is a term (from the Jordan vector) that goes as
nλn. For this to grow, it must be the λ = 1 eigenvalue that is repeated,
giving a term that grows proportional to n. This must dominate for large
n, hence we should have ‖B2000x‖/‖B1000x‖ ≈ 2.

More explicitly, call the three eigenvectors x1, x2, x3, and the Jordan vec-
tor j1. If we write x = c1x1 + d1j1 + c2x2 + c3x3 in this basis for some
coefficients c1, d1, c2, c3, then we will have:

Bnx = 1nc1x1 + 1nd1j1 + n1n−1d1x1 + 0.4nc2x2 + (−0.7)nc3x3,

and for large n this is ≈ nd1x1.
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(c) A positive Markov matrixM has a steady-state eigenvector


1
0
2
3

 .What

is Mn


1
0
0
0

 for n→∞?

Solution: Mnx must approach a multiple of the steady-state eigenvector
for any x . Which multiple? Multiplying by a Markov matrix conserves
the sum of the entries of a vector, and the sum of the entries of (1, 0, 0, 0)
is 1, so it must approach

1

6


1
0
2
3

 .

(d) For a real matrix C, and almost any randomly chosen initial x(0), the
equation dx

dt = Cx has solutions that are oscillating and decaying (for
large t) as a function of t. Circle all of the things that could possibly
be true of C: symmetric, anti-symmetric, orthogonal, Markov, diagonal-
izable, defective, singular, diagonal.

Solution: to have solutions that are oscillating and decaying, there must
be a complex eigenvalue λ with a negative real part. Furthermore, to get
this for “almost any” initial condition, we must have that the other solu-
tions are decaying (faster) too: the other eigenvalues must have (larger)
negative real parts. This immediately rules out symmetric (real λ), an-
tisymmetric (imaginary λ), Markov (a λ = 1), and singular (a λ = 0)
matrices. It can’t be diagonal because the matrix is real, and a real di-
agonal matrix has real eigenvalues (the diagonal entries). This leaves:
orthogonal, diagonalizable, or defective. All of those are possible.
(Orthogonal matrices can have complex eigenvalues with negative real
parts, as long as |λ| = 1. Both diagonalizable and defective matrices can
have such eigenvalues, of course. Defective matrices give a term in x(t)
that goes like teλt , but this is still decaying if λ has a negative real part.)

Problem 7:
The matrix A is real-symmetric and positive-definite. Using it, we write a
recurrence equation

xn − xn+1 = A (xn + xn+1)

for a sequence of vectors x0, x1, . . .

(a) For any xn, the recurrence relation above defines a unique solution xn+1.
Why?
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Solution: First, let’s rearrange the recurrence to get an equation for
xn+1. We have xn −Axn = xn+1 +Axn+1 or, in matrix form:

(I +A)xn+1 = (I −A)xn =⇒ xn+1 = (I +A)−1(I −A)xn.

This always has a unique solution since I +A is invertible: A is positive-
definite with eigenvalues λ > 0, so I +A has eigenvalues 1 + λ > 0.

(b) If Av = λv and x0 = v, give an equation for xn in terms of v, n, and λ.

Solution: From above,

xn =
[
(I +A)−1(I −A)

]n
x0.

If x0 is an eigenvector v of A (also an eigenvector of I + A and I − A),
then A just acts like a scalar λ and we get

xn =

[
1− λ
1 + λ

]n
v

(c) For an arbitrary x0, does the length of the solution ‖xn‖ grow with n,
decay with n, oscillate, or approach a nonzero steady-state?

Solution: We can expand any vector x0 in the basis of the eigenvec-
tors v1, v2, . . . , vn, i.e. x0 =

∑
i civi. Each term uses the formula from the

previous part, so

xn =
∑
i

[
1− λi
1 + λi

]n
civi.

But each of these terms is decaying: λi > 0 (A is positive-definite),
so |1−λ| < |1 +λ| and the ratio has

∣∣∣ 1−λi

1+λi

∣∣∣ < 1. So, ‖xn‖ → 0 as n→∞.

(d) Suppose A is 4 × 4 and the eigenvalues are λ1 = 0.1, λ2 = 1, λ3 = 2,
λ4 = 3, and the corresponding eigenvectors are v1, v2, v3, and v4 (all
normalized to length ‖vk‖ = 1). The initial x0 is some arbitrary vector.
Write an exact formula for xn in terms of x0 and these eigenvectors and
eigenvalues—you should get a sum of four terms. Which term should typ-
ically dominate for large n?

Solution: As above, but we can furthermore use the fact that the eigen-
vectors are orthonormal (they are orthogonal since it is a real-symmetric
matrix with distinct eigenvalues, and we normalized them to length 1) to
say that the coefficients are ci = vTi x0, and hence

xn =

4∑
i=1

[
1− λi
1 + λi

]n
viv

T
i x0 =

[
0.9

1.1

]n
v1v

T
1 x0+0nv2v

T
2 x0+

[
−1

3

]n
v3v

T
3 x0+

[
−1

2

]n
v4v

T
4 x0.

For large n, the first term obviously dominates.
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