MIT 18.06 Final Exam, Spring 2017

Your name:

Recitation:

problem	score
1	/25
2	/25
3	/25
4	/25
5	/25
6	/25
7	/25
total	/175

Problem 1:

For some real matrix A, the following vectors form a basis for its column space and null space:

$$C(A) = \operatorname{span}\left\langle \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \\ -1 \end{pmatrix} \right\rangle,$$
$$N(A) = \operatorname{span}\left\langle \begin{pmatrix} 1\\-1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\0\\0\\1 \end{pmatrix} \right\rangle.$$

- (a) What is the size $m \times n$ of A, what is its rank, and what are the dimensions of $C(A^T)$ and $N(A^T)$?
- (b) Give one possible matrix A with this C(A) and N(A).
- (c) Give a right-hand side b for which Ax = b has a solution, and give all the solutions x for your A from the previous part. (Hint: you should not have to do Gaussian elimination.)
- (d) For $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, the equation Ax = b as no solutions. Instead, give

another right-hand side \hat{b} for which $A\hat{x} = \hat{b}$ is solvable and yields a least-square solution \hat{x} (i.e. \hat{x} minimizes ||Ax - b||). \hat{b} must be the ______ of b onto the subspace ______

(Hint: if you find yourself solving a 4×4 system of equations, you are missing a way to do it much more easily. The answer should *not* depend on your choice of A matrix in part b.)

Problem 2:

Suppose you have 100 data points (x_i, y_i) for i = 1, 2, ..., 100, and you want to fit them to a power-law curve $y(x) = ax^b$ for some a and b. Equivalently, you want to fit $\log y_i$ to $\log y = \log(ax^b) = b \log x + \log a$. Describe how to find a and b to minimize the sum of the squares of the errors:

$$s(a,b) = \sum_{i=1}^{100} (b \log x_i + \log a - \log y_i)^2.$$

Write down a 2×2 system of equations for the vector $z = \begin{pmatrix} b \\ \log a \end{pmatrix}$; you can leave your equations in the form of a product of matrices/vectors as long as you say what the matrices/vectors are. (Hint: rewrite it as an 18.06-style least-squares problem with matrices/vectors.)

Problem 3:

Suppose that 4×4 real matrix $A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix}$ has four orthogonal but not orthonormal columns a_i with lengths $||a_1|| = 2$, $||a_2|| = 1$, $||a_3|| = 3$, $||a_4|| = 2$. (That is, $a_i^T a_j = 0$ for $i \neq j$.)

- (a) Write an explicit expression for the solution x to Ax = b in terms of dot products, additions, and multiplications by scalars.
- (b) Write A as a sum of four rank-1 matrices.

(c) If we write the matrix $B = A \begin{pmatrix} 3 & & \\ & 6 & \\ & & 2 & \\ & & & 3 \end{pmatrix}$, then what is $B^T B$? Hence, for any $x \neq 0$, $\frac{\|Bx\|}{\|x\|} =$ ____.

(d) Write the SVD $A = U\Sigma V^T$: explicitly give the singular values σ (diagonal of Σ) and the singular vectors (columns of U, V, possibly in terms of the columns a_i). Hint: what is $A^T A$, and what are its eigenvectors (this should give you either U or V) and eigenvalues (related somehow to σ)? Recall also from homework that $AV = U\Sigma$.

Problem 4:

Suppose that A and B are two real $m \times m$ matrices, and B is invertible.

- (a) Circle which (if any) of the following must be true: C(A) = C(AB), C(A) = C(BA), N(A) = N(AB), N(A) = N(BA).
- (b) Circle which (if any) of the following matrices must be symmetric: ABBA, $A^{T}BB^{T}A$, $A^{T}BAB^{T}$, $A^{T}BB^{-1}A$, $A^{T}(B^{T})^{-1}B^{-1}A$?
- (c) If B is a projection matrix (as well as invertible), then AB =_____.
- (d) Do AB and BA have the same eigenvalues? Give a reason if true, a counter-example if false.
- (e) Suppose A has rank r. Say as many true things as possible about the eigenvalues of $C = A^T B^T B A$ that would *not* necessarily be true if C were just a random $m \times m$ matrix.

Problem 5:

You have a matrix A with the factorization:

$$A = \begin{pmatrix} 1 & & \\ 3 & 2 & \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ & 2 & -1 \\ & & 2 \end{pmatrix}.$$

- (a) What is the product of the 3 eigenvalues of A?
- (b) Solve $Ax = \begin{pmatrix} 2\\4\\7 \end{pmatrix}$ for x. (Hint: if you find yourself doing Gaussian elimination, you are missing something.)
- (c) Gaussian elimination (without row swaps) produces an A = LU factorization, but you can tell at a glance that this is *not* the same as the factorization above, because L is always a lower-triangular matrix with 1's on the diagonal. Find the ordinary LU factorization of A (the matrices L and U) by multiplying and/or dividing the factors above with some diagonal matrix.

Problem 6:

(a) One of of the eigenvalues of

$$A = \left(\begin{array}{rrr} 3 & 1 & 4 \\ & 1 & 5 \\ & 1 & 5 \end{array} \right).$$

is $\lambda = 3$. Find the other two eigenvalues. (Hint: one eigenvalue should be obvious from inspection of A, since A is ______. You shouldn't need to explicitly write down and solve any cubic equation, because once you find two eigenvalues you can get the third from the ______ of A.)

- (b) For a 4 × 4 matrix B, the polynomial det(B λI) has three roots λ = 1,0.4,-0.7. You find that, for some vector x, the vector Bⁿx is getting longer and longer as n grows. It must be the case that B is a matrix. Approximately what is ||B²⁰⁰⁰x||/||B¹⁰⁰⁰x||?
- (c) A positive Markov matrix M has a steady-state eigenvector $\begin{pmatrix} 1\\0\\2\\3 \end{pmatrix}$. What

is
$$M^n \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$$
 for $n \to \infty$?

(d) For a real matrix C, and almost any randomly chosen initial x(0), the equation $\frac{dx}{dt} = Cx$ has solutions that are oscillating and decaying (for large t) as a function of t. Circle all of the things that could possibly be true of C: symmetric, anti-symmetric, orthogonal, Markov, diagonalizable, defective, singular, diagonal.

Problem 7:

The matrix A is real-symmetric and positive-definite. Using it, we write a recurrence equation

$$x_n - x_{n+1} = A \left(x_n + x_{n+1} \right)$$

for a sequence of vectors x_0, x_1, \ldots

- (a) For any x_n , the recurrence relation above defines a unique solution x_{n+1} . Why?
- (b) If $Av = \lambda v$ and $x_0 = v$, give an equation for x_n in terms of v, n, and λ .
- (c) For an arbitrary x_0 , does the length of the solution $||x_n||$ grow with n, decay with n, oscillate, or approach a nonzero steady-state?
- (d) Suppose A is 4×4 and the eigenvalues are $\lambda_1 = 0.1$, $\lambda_2 = 1$, $\lambda_3 = 2$, $\lambda_4 = 3$, and the corresponding eigenvectors are v_1 , v_2 , v_3 , and v_4 (all normalized to length $||v_k|| = 1$). The initial x_0 is some arbitrary vector. Write an exact formula for x_n in terms of x_0 and these eigenvectors and eigenvalues—you should get a sum of four terms. Which term should typically dominate for large n?