MIT 18.06 Final Exam, Spring 2017

Your name: \qquad

Recitation:

problem	score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
5	$/ 25$
6	$/ 25$
7	$/ 25$
total	$/ 175$

Problem 1:

For some real matrix A, the following vectors form a basis for its column space and null space:

$$
\begin{gathered}
C(A)=\operatorname{span}\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\rangle, \\
N(A)=\operatorname{span}\left\langle\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)\right\rangle .
\end{gathered}
$$

(a) What is the size $m \times n$ of A, what is its rank, and what are the dimensions of $C\left(A^{T}\right)$ and $N\left(A^{T}\right)$?
(b) Give one possible matrix A with this $C(A)$ and $N(A)$.
(c) Give a right-hand side b for which $A x=b$ has a solution, and give all the solutions x for your A from the previous part. (Hint: you should not have to do Gaussian elimination.)
(d) For $b=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, the equation $A x=b$ as no solutions. Instead, give another right-hand side \hat{b} for which $A \hat{x}=\hat{b}$ is solvable and yields a least-square solution \hat{x} (i.e. \hat{x} minimizes $\|A x-b\|$). \hat{b} must be the of b onto the subspace \qquad . (Hint: if you find yourself solving a 4×4 system of equations, you are missing a way to do it much more easily. The answer should not depend on your choice of A matrix in part b.)
(blank page for your work if you need it)

Problem 2:

Suppose you have 100 data points $\left(x_{i}, y_{i}\right)$ for $i=1,2, \ldots, 100$, and you want to fit them to a power-law curve $y(x)=a x^{b}$ for some a and b. Equivalently, you want to fit $\log y_{i}$ to $\log y=\log \left(a x^{b}\right)=b \log x+\log a$. Describe how to find a and b to minimize the sum of the squares of the errors:

$$
s(a, b)=\sum_{i=1}^{100}\left(b \log x_{i}+\log a-\log y_{i}\right)^{2}
$$

Write down a 2×2 system of equations for the vector $z=\binom{b}{\log a}$; you can leave your equations in the form of a product of matrices/vectors as long as you say what the matrices/vectors are. (Hint: rewrite it as an 18.06-style least-squares problem with matrices/vectors.)
(blank page for your work if you need it)

Problem 3:

Suppose that 4×4 real matrix $A=\left(\begin{array}{cccc}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right)$ has four orthogonal but not orthonormal columns a_{i} with lengths $\left\|a_{1}\right\|=2,\left\|a_{2}\right\|=1,\left\|a_{3}\right\|=3$, $\left\|a_{4}\right\|=2$. (That is, $a_{i}^{T} a_{j}=0$ for $i \neq j$.)
(a) Write an explicit expression for the solution x to $A x=b$ in terms of dot products, additions, and multiplications by scalars.
(b) Write A as a sum of four rank-1 matrices.
(c) If we write the matrix $B=A\left(\begin{array}{cccc}3 & & & \\ & 6 & & \\ & & 2 & \\ & & & 3\end{array}\right)$, then what is $B^{T} B$? Hence, for any $x \neq 0, \frac{\|B x\|}{\|x\|}=$ \qquad
(d) Write the SVD $A=U \Sigma V^{T}$: explicitly give the singular values σ (diagonal of Σ) and the singular vectors (columns of U, V, possibly in terms of the columns a_{i}). Hint: what is $A^{T} A$, and what are its eigenvectors (this should give you either U or V) and eigenvalues (related somehow to σ)? Recall also from homework that $A V=U \Sigma$.
(blank page for your work if you need it)

Problem 4:

Suppose that A and B are two real $m \times m$ matrices, and B is invertible.
(a) Circle which (if any) of the following must be true: $C(A)=C(A B)$, $C(A)=C(B A), N(A)=N(A B), N(A)=N(B A)$.
(b) Circle which (if any) of the following matrices must be symmetric: $A B B A$, $A^{T} B B^{T} A, A^{T} B A B^{T}, A^{T} B B^{-1} A, A^{T}\left(B^{T}\right)^{-1} B^{-1} A$?
(c) If B is a projection matrix (as well as invertible), then $A B=$
(d) Do $A B$ and $B A$ have the same eigenvalues? Give a reason if true, a counter-example if false.
(e) Suppose A has rank r. Say as many true things as possible about the eigenvalues of $C=A^{T} B^{T} B A$ that would not necessarily be true if C were just a random $m \times m$ matrix.
(blank page for your work if you need it)

Problem 5:

You have a matrix A with the factorization:

$$
A=\left(\begin{array}{ccc}
1 & & \\
3 & 2 & \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 1 \\
& 2 & -1 \\
& & 2
\end{array}\right)
$$

(a) What is the product of the 3 eigenvalues of A ?
(b) Solve $A x=\left(\begin{array}{l}2 \\ 4 \\ 7\end{array}\right)$ for x. (Hint: if you find yourself doing Gaussian elimination, you are missing something.)
(c) Gaussian elimination (without row swaps) produces an $A=L U$ factorization, but you can tell at a glance that this is not the same as the factorization above, because L is always a lower-triangular matrix with 1's on the diagonal. Find the ordinary LU factorization of A (the matrices L and U) by multiplying and/or dividing the factors above with some diagonal matrix.
(blank page for your work if you need it)

Problem 6:

(a) One of of the eigenvalues of

$$
A=\left(\begin{array}{lll}
3 & 1 & 4 \\
& 1 & 5 \\
& 1 & 5
\end{array}\right)
$$

is $\lambda=3$. Find the other two eigenvalues. (Hint: one eigenvalue should be obvious from inspection of A, since A is \qquad . You shouldn't need to explicitly write down and solve any cubic equation, because once you find two eigenvalues you can get the third from the
\qquad of A.)
(b) For a 4×4 matrix B, the polynomial $\operatorname{det}(B-\lambda I)$ has three roots $\lambda=$ $1,0.4,-0.7$. You find that, for some vector x, the vector $B^{n} x$ is getting longer and longer as n grows. It must be the case that B is a matrix. Approximately what is $\left\|B^{2000} x\right\| /\left\|B^{1000} x\right\|$?
(c) A positive Markov matrix M has a steady-state eigenvector $\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 3\end{array}\right)$. What is $M^{n}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ for $n \rightarrow \infty$?
(d) For a real matrix C, and almost any randomly chosen initial $x(0)$, the equation $\frac{d x}{d t}=C x$ has solutions that are oscillating and decaying (for large t) as a function of t. Circle all of the things that could possibly be true of C : symmetric, anti-symmetric, orthogonal, Markov, diagonalizable, defective, singular, diagonal.
(blank page for your work if you need it)

Problem 7:

The matrix A is real-symmetric and positive-definite. Using it, we write a recurrence equation

$$
x_{n}-x_{n+1}=A\left(x_{n}+x_{n+1}\right)
$$

for a sequence of vectors x_{0}, x_{1}, \ldots
(a) For any x_{n}, the recurrence relation above defines a unique solution x_{n+1}. Why?
(b) If $A v=\lambda v$ and $x_{0}=v$, give an equation for x_{n} in terms of v, n, and λ.
(c) For an arbitrary x_{0}, does the length of the solution $\left\|x_{n}\right\|$ grow with n, decay with n, oscillate, or approach a nonzero steady-state?
(d) Suppose A is 4×4 and the eigenvalues are $\lambda_{1}=0.1, \lambda_{2}=1, \lambda_{3}=2$, $\lambda_{4}=3$, and the corresponding eigenvectors are v_{1}, v_{2}, v_{3}, and v_{4} (all normalized to length $\left\|v_{k}\right\|=1$). The initial x_{0} is some arbitrary vector. Write an exact formula for x_{n} in terms of x_{0} and these eigenvectors and eigenvalues-you should get a sum of four terms. Which term should typically dominate for large n ?
(blank page for your work if you need it)

