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1 18.06 pset 1 solutions

1.1 Problem 1

The following code multiplies two random lower-triangular matrices (matrices whose entries are zero above
the diagonal).

• What do you observe about the result?
• Explain why this always happens when one multiplies lower-triangular matrices (of any size).

In [1]: L1 = Matrix(LowerTriangular(rand(-9:9, 5,5)))

Out[1]: 5x5 Array{Int64,2}:
-7 0 0 0 0

-5 8 0 0 0

-3 5 -2 0 0

3 4 -3 7 0

-9 -3 0 0 2

In [2]: L2 = Matrix(LowerTriangular(rand(-9:9, 5,5)))

Out[2]: 5x5 Array{Int64,2}:
-7 0 0 0 0

-9 1 0 0 0

-8 -9 9 0 0

2 -6 5 3 0

-1 5 -2 5 1

In [3]: L1 * L2

Out[3]: 5x5 Array{Int64,2}:
49 0 0 0 0

-37 8 0 0 0

-8 23 -18 0 0

-19 -11 8 21 0

88 7 -4 10 2

1.2 Solution

The product of two lower triangular matrices is always lower triangular. In fact if L1 and L2 are lower
triangular the (i, j) component of L1L2 is obtaining by the dot product of the i-th row of L1 and the j-th
column of L2. But when i < j (= entries above the diagonal), the dot product is always 0, since a nonzero
component of the i-th row of L1 is always paired with a zero component of the j-th column of L2 and vice
versa. In formulas:
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(L1L2)ij =

n∑
k=1

(L1)ik(L2)kj =

j−1∑
k=1

(L1)ik(L2)kj +

n∑
k=j

(L1)ik(L2)kj =

j−1∑
k=1

(L1)ik · 0 +

n∑
k=j

0 · (L2)kj = 0

In the
∑j−1

k=1, we have (L2)kj = 0 because k < j, which corresponds to an entry of L2 above the diagonal.
In the

∑n
k=j , we have (L1)ik = 0 if i < j because k ≥ j > i and hence (L1)ik is an entry of L1 above the

diagonal.

1.3 Problem 2

In this problem, we will see what happens when we think of a matrix as consisting of “blocks” that themselves
are matrices (“submatrices”). In particular, we will compute the product:

M =

(
A B
C D

)(
E F
G H

)
=

(
M1 M2

M3 M4

)
where A, B, and so on are 2× 2 submatrices.

• The goal is to figure out how to write the entries of M in terms of matrix operations on the submatrices.
In particular, if M1 is the upper-left 2× 2 submatrix of M , can we write a formula for this in terms of
matrix operations on A, B and so on?

You should figure out a formula and then try it out on a randomly generated matrix below to see
whether your formula works:

In [4]: # make random 2x2 submatrices

A = rand(-9:9,2,2)

B = rand(-9:9,2,2)

C = rand(-9:9,2,2)

D = rand(-9:9,2,2)

E = rand(-9:9,2,2)

F = rand(-9:9,2,2)

G = rand(-9:9,2,2)

H = rand(-9:9,2,2)

# compute the matrix M from the product:

M = [ A B

C D ] * [ E F

G H ]

Out[4]: 4x4 Array{Int64,2}:
-82 28 33 9

-49 -64 66 -56

13 59 -46 90

-36 -92 73 -71

In [5]: M1 = M[1:2, 1:2] # this is the upper-left 2x2 submatrix of M

Out[5]: 2x2 Array{Int64,2}:
-82 28

-49 -64

Now, can you figure out a formula for M1 in terms of matrix operations on the submatrices of M? For
example, is it A + CF −H?

In [6]: A + C*F - H # wrong formula -- fix this!
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Out[6]: 2x2 Array{Int64,2}:
41 14

31 -43

Nope, that doesn’t match M1. Figure out the correct formula (don’t just try things at random. . . it
might help to make a diagram of a row × column operation in computing M and see what submatrices that
involves). Try out your formula in Julia and verify that it works.

1.4 Solution

The correct formula is

In [7]: A*E+B*G

Out[7]: 2x2 Array{Int64,2}:
-82 28

-49 -64

This can be seen by looking at the definition of matrix multiplication: to compute the entry in the
(i, j)-th position we compute the dot product of the i-th row of the first matrix by the j-th column of the
second matrix. This is the sum of the dot product of the i-th row of A by the j-th column of E with the dot
product of the i-th row of B with the j-th column of G. More details can be found on the textbook section
on block matrices and block multiplication at page 74.

1.5 Problem 3

In this problem, you will do something like standard Gaussian elimination, but not in quite the usual way.
Suppose we want to solve Ax = b where

A =

 1 6 −1
−2 3 4
1 0 −2

 , b =

7
3
0

 .

Normally, with Gaussian elimination, you would convert A to upper-triangular form U , performing the
same row operations on b to get c, and then finally solve Ux = c for x by backsubstitution (starting from
the last equation and working upwards).

• Instead, for this problem, you should convert the Ax = b to the form Lx = d where L is lower
triangular (zero above the diagonal). Find L, find d, and then use this Lx = d equation to solve for
x.

For comparison, we can solve the same equation in Julia by x = A \ b. This is useful as a check to make
sure that you got the correct answer for x in the end:

In [8]: A = [ 1 6 -3

-2 3 4

1 0 -2 ]

Out[8]: 3x3 Array{Int64,2}:
1 6 -3

-2 3 4

1 0 -2

In [9]: b = [7, 3, 0]

Out[9]: 3-element Array{Int64,1}:
7

3

0
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In [10]: x = A \ b

Out[10]: 3-element Array{Float64,1}:
-2.0

1.0

-1.0

1.6 Solution

We start with the matrix

(A|b) =

 1 6 −3 7
−2 3 4 3
1 0 −2 0


In order to reduce to lower triangular form, add twice the third row to the second and remove 3/2 times the
third row from the first − 1

2 6 0 7
0 3 0 3
1 0 −2 0


Finally we remove twice the second row from the first− 1

2 0 0 1
0 3 0 3
1 0 −2 0


So we have transformed the system to the equivalent one Lx = d where

L =

− 1
2 0 0

0 3 0
1 0 −2

 d =

1
3
0

 .

And we can solve it via backsubstitution: we start with the first equation

−1

2
x1 = 1⇒ x1 = −2

3x2 = x2 ⇒ x2 = 1

x1 − 2x2 = 0⇒ x2 =
1

2
x1 = −1

Finally, the solution is (
−2 1 −1

)
.

1.7 Problem 4

In class, we went over standard Gaussian elimination: you subtract rows of a matrix A, one by one, to bring
it into upper-triangular form. Sometimes, if we encounter a zero pivot, we can swap rows in order to get a
nonzero pivot. (If we can’t do this, then the equations are singular and may have no solution.)

In principle, as long as we never encounter a zero pivot, this procedure will always work. In practice,
however, if we apply the procedure blindly, we may get disastrous results due to rounding errors: a
computer, a calculator, or (in olden days) a human doing hand calculation will usually only keep a fixed
number of significant digits and will discard additional digits (round) during calculations.

Apply Gaussian elimination to solve the following Ax = b system of equations:

A =

(
10−20 1

1 1

)
, b =

(
1
0

)
That is, convert A to upper-triangular form as usual, do the same row operations on b, and solve the resulting
triangular system for x.
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• What is the exact solution x?

• If you round the result of each operation to 16 significant digits, what approximate solution x̃ will you
get? (For example, 2 + 10−20 ≈ 2 if you round to 16 significant digits.) How close is it to the exact
solution x?

• Do the same thing (round each operation to 16 digits), but first swap the first and second rows of the
equation to maximize the magnitude of the pivot. (This is called partial pivoting.) What is the
new approximate solution, and how close is it to the exact x?

(It turns out that computer arithmetic ordinarily rounds to about 15–16 digits, so this kind of concern
is very important when people write computer programs to do linear algebra.)

For comparison, the Julia code below implements naive Gaussian elimination (no row re-ordering) and
backsubstitution. Because this is using standard double precision computer arithmetic, it rounds to about
15–16 decimal digits (technically, 53 binary digits), so its results should be very similar to your results above.
(The following code is only for informational purposes; you don’t need it to answer the questions above.)

1.8 Solution

Let us use the Gauss elimination algorithm on the matrix(
10−20 1 1

1 1 0

)
⇒
(

10−20 1 1
0 1− 1020 −1020

)
So the exact solution is (

− 1020

1020−1
1020

1020−1

)
≈
(
−1 1

)
.

However if we approximate the system after row reduction we get(
10−20 1 1

0 −1020 −1020

)
and the solution to the approximate system is (

0 1
)

which is very different from the exact solution. This is exactly the solution that naive gauss produces
below, because Julia (like most computer programs) performs arithmetic rounded to about 16 decimal
places (“double precision”).

If we swapped the rows instead we would get(
1 1 0

10−20 1 1

)
⇒
(

1 1 0
0 1− 10−20 1

)
≈
(

1 1 0
0 1 1

)
.

The solution to this approximate system is (
−1 1

)
which is very close to the solution to the exact system.

Note that A \ b in Julia produces this (nearly) correct solution. In fact, the Julia solver algorithm (like
all serious numerical linear algebra programs) swaps the rows (for every column step of Gaussian elimination)
so as to obtain the pivot with the largest possible magnitude. This is called partial pivoting, and is essential
for accuracy. See also the end of section 2.7 in the textbook, and section 11.1.

In [11]: """

naive_gauss(A)

Given a matrix ‘A‘, performs Gaussian elimination to convert

‘A‘ into an upper-triangular matrix ‘U‘, and returns the matrix ‘U‘.
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This implementation is "naive" because it *never re-orders the rows*.

(It will obviously fail if a zero pivit is encountered.)

"""

function naive_gauss(A)

m = size(A,1) # number of rows

U = copy(A)

for j = 1:m # loop over m columns

for i = j+1:m # loop over rows below the pivot row j

# subtract a multiple of the pivot row (j)

# from the current row (i) to cancel U[i,j] = U[U+1D62][U+2C7C]:

U[i,:] = U[i,:] - U[j,:] * U[i,j]/U[j,j]

end

end

return U

end

"""

backsubstitution(U, c)

Given an upper-triangular matrix ‘U‘, return the solution ‘x‘ to ‘U*x=c‘ by

the backsubstitution algorithm.

"""

function backsubstitution(U, c)

m = size(U,1) # number of rows

x = similar(c, typeof(c[1]/U[1,1])) # allocate the solution vector

for i = m:-1:1 # loop over the rows from bottom to top

r = c[i]

for k = i+1:m

r = r - U[i,k]*x[k]

end

x[i] = r / U[i,i]

end

return x

end

Out[11]: backsubstitution (generic function with 1 method)

Let’s perform naive Gaussian elimination (no row re-ordering) on the matrix A from above. We’ll augment
it with an extra column containing the vector b, so that the same row operations are performed on b:

In [12]: A = [1e-20 1

1 1]

b = [1,0]

U = naive_gauss([A b])

Out[12]: 2x3 Array{Float64,2}:
1.0e-20 1.0 1.0

0.0 -1.0e20 -1.0e20

Now, let’s perform backsubstitution to solve Ux = c (where U is the first two columns of the augmented
U matrix returned by naive gauss, and c is the last column):

In [13]: backsubstitution(U[:,1:2], U[:,3])

Out[13]: 2-element Array{Float64,1}:
0.0

1.0
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In comparison, the built-in \ solver is a little more clever, and may come up with a different answer:

In [14]: A \ b

Out[14]: 2-element Array{Float64,1}:
-1.0

1.0
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