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1 18.06 Pset 10 - Solutions

1.1 Problem 1

(From Strang, section 6.5, problem 15.)
Show that if m ×m matrices S and T are positive-definite, then S + T is positive-definite. (Use one of

the tests for positive-definiteness, from lecture or from the book.)

1.1.1 Solution

If S, T are positive definite, then for all nonzero x xHSx > 0 and xHTx > 0. In particular

xH(S + T )x = xHSx+ xHTx > 0

So S + T is also positive definite.

1.2 Problem 2

In class, we showed that a line of n identical masses connected n + 1 springs (anchored at the two ends)
leads to an ODE of the form:

ẍ = −DTWDx

where x is the vector of the n displacements of the masses, W is a diagonal matrix of the spring constants
kj divided by the masses, D is an (n+1)×n incidence matrix (which we proved is full column rank in class):

D =



1
−1 1

−1 1
. . .

. . .

−1 1
−1


.

The fact that A = DTWD is positive-definite was crucial, because this meant that the oscillation
frequencies ω =

√
λ of the vibrating “modes” of the system were real (hence, the masses oscillate, they don’t

exponentially grow or decay).
Now, suppose we attack the same problem, but the masses are not identical. In this case, it is easy to

repeat the derivation (you don’t need to) and show that we get equations of the form:

ẍ = −M−1DTKDx

where M is the diagonal matrix of the n (positive) masses m1,m2, . . . ,mn and K is the diagonal matrix
of the n + 1 (positive) spring constants k1, k2, . . . , kn+1. This matrix M−1DTKD is not symmetric, so
at first you might be worried that you could get complex eigenvalues, and hence (physically impossible)
exponentially growing or decaying solutions.

1



1.2.1 (a)

Show that if you do a change of variables y = Sx, where S is some diagonal matrix, then you get an
equation ÿ = −Ay where A is real-symmetric positive-definite (and hence you get real oscillating frequencies
ω =
√
λ exactly as in class).

Hint: S is a diagonal matrix involving the square roots of the masses.

1.2.2 (b)

Show that your matrix A is similar to M−1DTKD, so that the latter also must have real eigenvalues.

1.2.3 (c)

The following code generates 20 random masses and 21 random spring constants, and computes the eigen-
values of M−1DTKD.

Add another line to compute the eigenvalues of your matrix A from (a), and verify that the eigenvalues
are the same. Note: to create a diagonal matrix of the square roots of the masses in Julia, you can do
diagm(sqrt.(m)).

In [1]: m = rand(20) # 20 random masses between 0 and 1

k = rand(21) # 21 random spring constants between 0 and 1

M = diagm(m) # diagonal matrix of the masses

K = diagm(k) # diagonal matrix of the spring constants

o = ones(20); D = full(spdiagm((o,-o),(0,-1),21,20)) # the 21×20 D matrix

eigvals(M \ D’ * K * D)

Out[1]: 20-element Array{Float64,1}:
378.393

22.7784

7.19492

6.99004

4.6874

4.36002

4.29697

4.0479

2.95292

2.09382

1.37472

1.23118

0.0101793

0.0575899

0.232484

0.92327

0.838373

0.379284

0.515733

0.60174

In [2]: eigvals(???) # fix this

syntax: colon expected in "?" expression
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1.2.4 Solutions

(a) After doing a change of variable y = Sx, that is x = S−1y, the equation becomes

S−1ÿ = −M−1DTKDS−1y ⇔ ÿ = −SM−1DTKDS−1y

So we need the matrix A = SM−1DTKDS−1 to be symmetric. That is

SM−1DTKDS−1 = (SM−1DTKDS−1)T = (ST )−1DTKDM−1ST

So it is enough to have M−1ST = S−1 or, equivalently, M = STS. Since M is a diagonal matrix with
positive diagonal entries it is enough to choose S diagonal where the diagonal entries of S are the square
roots of the diagonal entries of M (that is the masses). Then, substituting M = STS we get

A = SM−1DTKDS−1 = SS−1(S−1)TDTKDS−1 = (DS−1)TK(DS−1)

which is clearly symmetric. It only remains to check that it is definite positive. Now let v be a nonzero real
vector, we need to check vTAv > 0. But

vTAv = vT (DS−1)TK(DS−1)v = (DS−1v)TK(DS−1v) > 0

since DS−1v is a nonzero vector and K is definite positive. #### (b) Our matrix A was defined as

A = S(M−1DTKD)S−1

and it is plainly similar to M−1DTKD (with similarity matrix S−1).

(c) By using the formula A = S−1DTKDS−1 we have

In [3]: S=diagm(sqrt.(m))

eigvals(inv(S) * D’ * K * D * inv(S))

Out[3]: 20-element Array{Float64,1}:
378.393

22.7784

7.19492

6.99004

4.6874

4.0479

4.36002

4.29697

2.95292

2.09382

1.37472

1.23118

0.0101793

0.0575899

0.232484

0.92327

0.838373

0.379284

0.515733

0.60174

which coincides with the answer for M−1DTKD.

In [ ]:
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