pset10

September 7, 2017

1 18.06 Pset 10

Due Wednesday, 5/3. (Note that 18.06 exam 3 is on Friday, 5/5; see the course page for topics.)

1.1 Problem 1

(From Strang, section 6.5, problem 15.)

Show that if $m \times m$ matrices S and T are positive-definite, then S + T is positive-definite. (Use one of the tests for positive-definiteness, from lecture or from the book.)

1.2 Problem 2

In class, we showed that a line of n identical masses connected n + 1 springs (anchored at the two ends) leads to an ODE of the form:

$$\ddot{x} = -D^T W D x$$

where x is the vector of the n displacements of the masses, W is a diagonal matrix of the spring constants k_i divided by the masses, D is an $(n+1) \times n$ incidence matrix (which we proved is full column rank in class):

$$D = \begin{pmatrix} 1 & & & \\ -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \\ & & & & & -1 \end{pmatrix}$$

The fact that $A = D^T W D$ is positive-definite was crucial, because this meant that the oscillation frequencies $\omega = \sqrt{\lambda}$ of the vibrating "modes" of the system were real (hence, the masses oscillate, they don't exponentially grow or decay).

Now, suppose we attack the *same* problem, but the masses are *not* identical. In this case, it is easy to repeat the derivation (*you don't need to*) and show that we get equations of the form:

$$\ddot{x} = -M^{-1}D^T K D x$$

where M is the diagonal matrix of the n (positive) masses m_1, m_2, \ldots, m_n and K is the diagonal matrix of the n + 1 (positive) spring constants $k_1, k_2, \ldots, k_{n+1}$. This matrix $M^{-1}D^TKD$ is not symmetric, so at first you might be worried that you could get complex eigenvalues, and hence (physically impossible) exponentially growing or decaying solutions.

1.2.1 (a)

Show that if you do a **change of variables** y = Sx, where S is some **diagonal matrix**, then you get an equation $\ddot{y} = -Ay$ where A is real-symmetric positive-definite (and hence you get real oscillating frequencies $\omega = \sqrt{\lambda}$ exactly as in class).

Hint: S is a diagonal matrix involving the square roots of the masses.

1.2.2 (b)

Show that your matrix A is similar to $M^{-1}D^T K D$, so that the latter also must have real eigenvalues.

1.2.3 (c)

The following code generates 20 random masses and 21 random spring constants, and computes the eigenvalues of $M^{-1}D^T KD$.

Add another line to compute the eigenvalues of your matrix A from (a), and verify that the eigenvalues are the same. Note: to create a diagonal matrix of the square roots of the masses in Julia, you can do diagm(sqrt.(m)).

In []: m = rand(20) # 20 random masses between 0 and 1
k = rand(21) # 21 random spring constants between 0 and 1
M = diagm(m) # diagonal matrix of the masses
K = diagm(k) # diagonal matrix of the spring constants
o = ones(20); D = full(spdiagm((o,-o),(0,-1),21,20)) # the 21×20 D matrix
eigvals(M \ D' * K * D)

In []: eigvals(???) # fix this