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1 18.06 pset 11 - Solutions

1.1 Problem 1

A key fact leading to the SVD is that for any m× n real matrix A, the positive semidefinite (eigenvalues ≥
0) matrices ATA and AAT have the same nonzero eigenvalues σ2

k > 0, where the σk are called the singular
values of A, for k = 1, 2, . . . , r, for r = rank(A). So, the SVD simultaneously diagonalizes ATA and AAT .

In this problem, you will derive the “reduced” form of the SVD based only on what you know about
eigenvectors.

(a) Suppose λ = σ2 > 0 is one of the r nonzero eigenvalues (if any) of AAT (they cannot be negative
because AAT is positive semidefinite for any A). That is, AATu = σ2u for some eigenvector u, normalized
to uTu = 1. Find an eigenvector v of ATA with the same eigenvalue, normalized to vT v = 1. (Hint: show
that ATA(ATu) = · · ·. Check your vT v to make sure that it is 1!)

(b) Why aren’t the eigenvectors for λ=0 eigenvalues related in the same way, i.e. why isn’t there a 1-to-1
correspondence between the λ=0 eigenvectors of AAT and ATA, just as in the previous part? (Hint: long
ago, in class, we showed N(AT ) = N(AAT ) for any A. . . this was a key point in least-squares problems.)

(c) How do your eigenvectors u and v from (a) relate to the solution of problem 2 from pset 9?
(d) Since N(A) = N(ATA) (we derived this long ago in class, for least-squares and projection problems),

explain why Ax = AV̂ V̂ Tx for any x, where V̂ is the n × r matrix whose columns are the orthonormal
eigenvectors v1, . . . , vr of ATA with positive eigenvalues σ2

1 , . . . , σ
2
r > 0. (Recall that V̂ V̂ T is the projection

operation onto C(V̂ ). Hint: C(V̂ ) is the orthogonal complement of the nullspaces of what matrices?)
(e) Take the r = rank(A) nonzero eigenvectors σ2

k of AAT (or ATA) and the corresponding orthonormal

eigenvectors uk and vk from part (a). Form the m×r matrix Û whose columns are u1, . . . , ur, along with the
corresponding V̂ matrix from above. Form the r×r diagonal matrix Σ̂ whose diagonal entries are σ1, . . . , σr.

• Show that AV̂ = Û Σ̂.

• Explain why it follows from (d) that A = Û Σ̂V̂ T . This is the reduced SVD: in the ordinary SVD you
have square unitary matrices U and V and a non-square m× n diagonal matrix Σ.

1.1.1 Solution

(a) We will let v = αATu, where α is some scalar to be determined when we normalize v. This is an
eigenvector of ATA because

(ATA)v = (ATA)
(
αATu

)
= αAT (AAT )u = αATλu = λ

(
αATu

)
= λv

so we only need to find α such that v has norm 1 (and at the same time we will also prove that v is nonzero,
which is an important condition to check!). In fact

vT v =
(
αATu

)T (
αATu

)
= α2uTAATu = α2λuTu = (ασ)2

, which = 1 if α = ±σ−1. We will choose +σ−1, and hence v = σ−1ATu . #### (b) Suppose now that
u is in the nullspace of AAT . Then in our correspondence we would like to send u to some multiple of
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ATu. But we have seen in class that N(AAT ) = N(AT ), so ATu = 0 and no multiple can be an eigenvector
(since eigenvectors are required to be nonzero). The same situation holds for v in the nullspace of ATA and
u = Av.

Another problem is that ATA is n × n while AAT is m ×m. So the nullspace of ATA has dimension
n − r while the nullspace of AAT has dimension m − r. If m 6= n, therefore there is no way to make a
one-to-one-correspondence between the λ = 0 eigenvectors, because there are different numbers of them!
#### (c) If {u, v} is a pair of eigenvectors of AAT and ATA corresponding to the nonzero eigenvalue λ

as in part (a), the column vector (u; v) forms an eigenvector for the matrix B =

(
0 A
AT 0

)
with eigenvalue

σ =
√
λ. In fact we have seen that v = 1

σA
Tu and u = 1

σAv so{
Av = σu

ATu = σv
⇔
(

0 A
AT 0

)(
u
v

)
= σ

(
u
v

)

So to every pair {u, v} of eigenvectors of AAT and ATA there is a pair of eigenvectors

(
u
v

)
,

(
u
−v

)
for the

matrix B as in problem 2 of problem set 9.
The important consequence of this is that you can get the singular values and singular vectors of A from

the eigenvalues and eigenvectors of B. This is the starting point for a famous numerical method for the
SVD called Golub-Kahan Bidiagonalization. #### (d) The matrix V̂ V̂ T is the orthogonal projection
onto the orthogonal complement of N(A) = N(ATA) (since C(V̂ ) is precisely the span of the eigenvectors
of ATA with nonzero eigenvalues). In particular, the columns of I − V̂ V̂ T are vectors in the nullspace of A.
Hence

A−AV̂ V̂ T = A(I − V̂ V̂ T ) = 0

Another way of thinking of it is that AV̂ V̂ T does the same thing as A for all the nonzero-λ eigenvectors
v of A (for which V̂ V̂ T v = v) and also does same thing as A for all λ = 0 eigenvectors v0 of A (for which
V̂ V̂ T v0 = 0), so therefore it is the same matrix as A. More formally, any vector x can be decomposed into
xv + x0, where x0 ∈ N(A) = N(ATA) and xv = V̂ V̂ Tx ∈ N(A)⊥ = C(V̂ ). Then we have Ax = Axv =
AV̂ V̂ Tx, since Ax0 = 0, so A = AV̂ V̂ T . #### (e)

Recall that matrix multiplication AV̂ simply multiplies A by each column of V̂ =
(
v1 v2 · · · vr

)
.

But, since from (a) Avi = AATui/σi = σiui, we have:

AV̂ =
(
Av1 Av2 · · · Avr

)
=
(
σ1u1 σ2u2 · · · σrur

)
=
(
u1 u2 · · · ur

)︸ ︷︷ ︸
Û


σ1

σ2

. . .

σr


︸ ︷︷ ︸

Σ̂

= Û Σ̂

since multiplying Û on the right by Σ̂ scales each column of Û by σ1, . . . , σr.
Finally, putting everything together,

Û Σ̂V̂ T = (Û Σ̂)V̂ T = AV̂ V̂ T = A

where the last equality comes from part (d).

1.2 Problem 2

Execute the following code cells in the Julia notebook, reading along, and answer the question at the end.
The following matrix represents the Iris flower dataset. Each row is a different flower (150 flowers), and

the columns are the measurements (in cm) of the lengths of four different flower parts.

In [1]: X = [5.1 3.5 1.4 0.2; 4.9 3.0 1.4 0.2; 4.7 3.2 1.3 0.2; 4.6 3.1 1.5 0.2; 5.0 3.6 1.4 0.2; 5.4 3.9 1.7 0.4; 4.6 3.4 1.4 0.3; 5.0 3.4 1.5 0.2; 4.4 2.9 1.4 0.2; 4.9 3.1 1.5 0.1; 5.4 3.7 1.5 0.2; 4.8 3.4 1.6 0.2; 4.8 3.0 1.4 0.1; 4.3 3.0 1.1 0.1; 5.8 4.0 1.2 0.2; 5.7 4.4 1.5 0.4; 5.4 3.9 1.3 0.4; 5.1 3.5 1.4 0.3; 5.7 3.8 1.7 0.3; 5.1 3.8 1.5 0.3; 5.4 3.4 1.7 0.2; 5.1 3.7 1.5 0.4; 4.6 3.6 1.0 0.2; 5.1 3.3 1.7 0.5; 4.8 3.4 1.9 0.2; 5.0 3.0 1.6 0.2; 5.0 3.4 1.6 0.4; 5.2 3.5 1.5 0.2; 5.2 3.4 1.4 0.2; 4.7 3.2 1.6 0.2; 4.8 3.1 1.6 0.2; 5.4 3.4 1.5 0.4; 5.2 4.1 1.5 0.1; 5.5 4.2 1.4 0.2; 4.9 3.1 1.5 0.1; 5.0 3.2 1.2 0.2; 5.5 3.5 1.3 0.2; 4.9 3.1 1.5 0.1; 4.4 3.0 1.3 0.2; 5.1 3.4 1.5 0.2; 5.0 3.5 1.3 0.3; 4.5 2.3 1.3 0.3; 4.4 3.2 1.3 0.2; 5.0 3.5 1.6 0.6; 5.1 3.8 1.9 0.4; 4.8 3.0 1.4 0.3; 5.1 3.8 1.6 0.2; 4.6 3.2 1.4 0.2; 5.3 3.7 1.5 0.2; 5.0 3.3 1.4 0.2; 7.0 3.2 4.7 1.4; 6.4 3.2 4.5 1.5; 6.9 3.1 4.9 1.5; 5.5 2.3 4.0 1.3; 6.5 2.8 4.6 1.5; 5.7 2.8 4.5 1.3; 6.3 3.3 4.7 1.6; 4.9 2.4 3.3 1.0; 6.6 2.9 4.6 1.3; 5.2 2.7 3.9 1.4; 5.0 2.0 3.5 1.0; 5.9 3.0 4.2 1.5; 6.0 2.2 4.0 1.0; 6.1 2.9 4.7 1.4; 5.6 2.9 3.6 1.3; 6.7 3.1 4.4 1.4; 5.6 3.0 4.5 1.5; 5.8 2.7 4.1 1.0; 6.2 2.2 4.5 1.5; 5.6 2.5 3.9 1.1; 5.9 3.2 4.8 1.8; 6.1 2.8 4.0 1.3; 6.3 2.5 4.9 1.5; 6.1 2.8 4.7 1.2; 6.4 2.9 4.3 1.3; 6.6 3.0 4.4 1.4; 6.8 2.8 4.8 1.4; 6.7 3.0 5.0 1.7; 6.0 2.9 4.5 1.5; 5.7 2.6 3.5 1.0; 5.5 2.4 3.8 1.1; 5.5 2.4 3.7 1.0; 5.8 2.7 3.9 1.2; 6.0 2.7 5.1 1.6; 5.4 3.0 4.5 1.5; 6.0 3.4 4.5 1.6; 6.7 3.1 4.7 1.5; 6.3 2.3 4.4 1.3; 5.6 3.0 4.1 1.3; 5.5 2.5 4.0 1.3; 5.5 2.6 4.4 1.2; 6.1 3.0 4.6 1.4; 5.8 2.6 4.0 1.2; 5.0 2.3 3.3 1.0; 5.6 2.7 4.2 1.3; 5.7 3.0 4.2 1.2; 5.7 2.9 4.2 1.3; 6.2 2.9 4.3 1.3; 5.1 2.5 3.0 1.1; 5.7 2.8 4.1 1.3; 6.3 3.3 6.0 2.5; 5.8 2.7 5.1 1.9; 7.1 3.0 5.9 2.1; 6.3 2.9 5.6 1.8; 6.5 3.0 5.8 2.2; 7.6 3.0 6.6 2.1; 4.9 2.5 4.5 1.7; 7.3 2.9 6.3 1.8; 6.7 2.5 5.8 1.8; 7.2 3.6 6.1 2.5; 6.5 3.2 5.1 2.0; 6.4 2.7 5.3 1.9; 6.8 3.0 5.5 2.1; 5.7 2.5 5.0 2.0; 5.8 2.8 5.1 2.4; 6.4 3.2 5.3 2.3; 6.5 3.0 5.5 1.8; 7.7 3.8 6.7 2.2; 7.7 2.6 6.9 2.3; 6.0 2.2 5.0 1.5; 6.9 3.2 5.7 2.3; 5.6 2.8 4.9 2.0; 7.7 2.8 6.7 2.0; 6.3 2.7 4.9 1.8; 6.7 3.3 5.7 2.1; 7.2 3.2 6.0 1.8; 6.2 2.8 4.8 1.8; 6.1 3.0 4.9 1.8; 6.4 2.8 5.6 2.1; 7.2 3.0 5.8 1.6; 7.4 2.8 6.1 1.9; 7.9 3.8 6.4 2.0; 6.4 2.8 5.6 2.2; 6.3 2.8 5.1 1.5; 6.1 2.6 5.6 1.4; 7.7 3.0 6.1 2.3; 6.3 3.4 5.6 2.4; 6.4 3.1 5.5 1.8; 6.0 3.0 4.8 1.8; 6.9 3.1 5.4 2.1; 6.7 3.1 5.6 2.4; 6.9 3.1 5.1 2.3; 5.8 2.7 5.1 1.9; 6.8 3.2 5.9 2.3; 6.7 3.3 5.7 2.5; 6.7 3.0 5.2 2.3; 6.3 2.5 5.0 1.9; 6.5 3.0 5.2 2.0; 6.2 3.4 5.4 2.3; 5.9 3.0 5.1 1.8]
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Out[1]: 150×4 Array{Float64,2}:
5.1 3.5 1.4 0.2

4.9 3.0 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5.0 3.6 1.4 0.2

5.4 3.9 1.7 0.4

4.6 3.4 1.4 0.3

5.0 3.4 1.5 0.2

4.4 2.9 1.4 0.2

4.9 3.1 1.5 0.1

5.4 3.7 1.5 0.2

4.8 3.4 1.6 0.2

4.8 3.0 1.4 0.1
...

6.0 3.0 4.8 1.8

6.9 3.1 5.4 2.1

6.7 3.1 5.6 2.4

6.9 3.1 5.1 2.3

5.8 2.7 5.1 1.9

6.8 3.2 5.9 2.3

6.7 3.3 5.7 2.5

6.7 3.0 5.2 2.3

6.3 2.5 5.0 1.9

6.5 3.0 5.2 2.0

6.2 3.4 5.4 2.3

5.9 3.0 5.1 1.8

This data actually includes 3 different species of flower, and the goal is to figure out how to differentiate
between the species based on the above data. If we number the species 0, 1, and 2 (Iris setosa, Iris virginica
and Iris versicolor), then the following array contains the species of each row in X:

In [2]: species = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Out[2]: 150-element Array{Int64,1}:
0

0

0

0

0

0

0

0

0

0

0

0

0
...
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Before we do any data analysis, we should subtract the mean of all the samples (all the flowers), which
can be done efficiently in Julia via the “broadcasting” .- operations combined with the function mean(X,1)

that returns a row vector of the means of each column:
Erratum: Due to an error in the problem set, the code accidentally subtracted mean(X,2), the mean

of each row. We will proceed in the solutions with the erroneous A, and re-do it with the corrected A at the
end:

In [3]: A = X .- mean(X,2)

Out[3]: 150×4 Array{Float64,2}:
2.55 0.95 -1.15 -2.35

2.525 0.625 -0.975 -2.175

2.35 0.85 -1.05 -2.15

2.25 0.75 -0.85 -2.15

2.45 1.05 -1.15 -2.35

2.55 1.05 -1.15 -2.45

2.175 0.975 -1.025 -2.125

2.475 0.875 -1.025 -2.325

2.175 0.675 -0.825 -2.025

2.5 0.7 -0.9 -2.3

2.7 1.0 -1.2 -2.5

2.3 0.9 -0.9 -2.3

2.475 0.675 -0.925 -2.225
...

2.1 -0.9 0.9 -2.1

2.525 -1.275 1.025 -2.275

2.25 -1.35 1.15 -2.05

2.55 -1.25 0.75 -2.05

1.925 -1.175 1.225 -1.975

2.25 -1.35 1.35 -2.25

2.15 -1.25 1.15 -2.05

2.4 -1.3 0.9 -2.0

2.375 -1.425 1.075 -2.025

2.325 -1.175 1.025 -2.175

1.875 -0.925 1.075 -2.025

1.95 -0.95 1.15 -2.15

Now, each flower could be viewed as a point in a four-dimensional space (i.e. the 4 measurements) called
feature space. We’d like to find out what are the important directions in this 4d space in order to explain
the variations among the individual flowers, and hopefully to identify the fact that there are three different
species.

If we just slice this 4d parameter space in a “random” direction, e.g. we plot the 4th coordinate (4th
column of A) vs the 1st coordinate (1st column of A), we just see a blob of points. The different colors are
the different species, and they are all mixed up together:

In [4]: using PyPlot

scatter(A[:,1], A[:,4], c=species, cmap="viridis")
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xlabel("sepal length (cm)")

ylabel("petal width (cm)")

Out[4]: PyObject <matplotlib.text.Text object at 0x3277d7f10>

Now, let’s perform some principal components analysis (PCA) to try to figure out the “right” way to
look at this data.

First, compute the SVD of this matrix A, which is equivalent to diagonalizing the covariance matrix AAT

as discussed in class (and in the book):

In [5]: U, σ, V = svd(A)

σ

Out[5]: 4-element Array{Float64,1}:
40.9812

17.0172

2.11132

7.26536e-15

The singular values σ indicate how much of the variance is explained by each singular vector.
Given this information, you should be able to pick out two directions in 4d (two directions in feature

space, i.e. two combinations of measurements) that explain most of the variation between.
Fix the code below to compute two 150-component vectors x1 and x2, corresponding two these two

combinations of measurements for each flower, and plot x2 vs x1.
You should see that the flowers separate into three groups corresponding to the three different species:

PCA identifies the key measurements (or rather, the key combination of measurements) that explain the
variations.
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In [6]: x1 = ???

x2 = ???

scatter(x1, x2, c=species, cmap="viridis")

syntax: colon expected in "?" expression

Print out this plot (or print to PDF or make a screenshot and attach it electronically on Stellar) and
your ??? code with your solutions.

1.2.1 Solution

The two directions v1 and v2 in our 4d “feature space” which account for the most variance are the two left
singular vectors corresponding to the two biggest singular values. That is they are the first two columns of
V . Then we can write x1 = Av1 and x2 = Av2, which will contain most of the variance.

In [7]: x1 = A*V[:,1]

x2 = A*V[:,2]

scatter(x1, x2, c=species, cmap="viridis")

title(L"plotting $Av$")

Out[7]: PyObject <matplotlib.text.Text object at 0x3293f2950>
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As we can see the three species are neatly separated in three different groups.
Equivalently, we could think of the first two columns of U as being the “uncorrelated measurements”

that account for most of the variance:

In [8]: x1 = U[:,1]

x2 = U[:,2]

scatter(x1, x2, c=species, cmap="viridis")

title(L"plotting $u$")

Out[8]: PyObject <matplotlib.text.Text object at 0x3294c4910>

You should notice that this plot looks exactly the same as above except that the axes are scaled
differently.

This should come as no surprise, since from problem 1 we know that Avi = σiui, so plotting Av or u is
the same thing up to a scale factor of σ.

Erratum: as mentioned above, we really should have subtracted mean(X,1), not mean(X,2), in order
to do PCA properly: we need to subtract the mean of all of the samples from each measurement (the mean
of the columns from each column), not the mean of the measurements for each sample.

The following plot is the corrected PCA. However, in this particular case the ability to discriminate
between species doesn’t change much:

In [9]: U, σ, V = svd(X .- mean(X,1))

scatter(U[:,1], U[:,2], c=species, cmap="viridis")

title(L"erratum: correctly subtracting the mean, plotting $u$")
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Out[9]: PyObject <matplotlib.text.Text object at 0x3296def90>
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