
pset2-sol

September 7, 2017

1 Problem Set 2 - Solutions

1.1 Problem 1

(From Strang, section 2.2, problem 25.)

A =

a 2 3
a a 4
a a a

?

For which three numbers a will elimination fail to give three pivots for this matrix? That is, for which values
of a is this matrix singular?

Solution First of all, if a = 0 the matrix is already upper triangular and it has two pivots. So the matrix
is singular for a = 0. Now, supposet a 6= 0. Then we can subtract the first row from the second and the
third, thus getting a 2 3

0 a− 2 1
0 a− 2 a− 3


As before, if a = 2 the matrix is upper triangular with only two pivots and so is singular. Let us now assume
a 6= 2. So we can subtract the second from the third and geta 2 3

0 a− 2 1
0 0 a− 4


This matrix is upper triangular and it is nonsingular if and only if a is not 0, 2 or 4. So those are the only
values of a for which the matrix is singular.

1.2 Problem 2

Suppose we already know the inverse A−1 of a m×m matrix A. Now, we want to find the inverse (A+uvT)−1,
where u and v are m-component column vectors. Ideally, we’d like to do this without re-doing the whole
matrix-inversion process!

1.2.1 part (a)

Find the scalar (number) α so that

(A+ uvT)−1 = A−1 − A−1uvTA−1

α

(Hint: if you see an expression like xTBy, realize that this is just a scalar and can be commuted with any
other matrix/vector operations.)

1

Solution Multiplying both sides by A+ uvT on the left we get

I = I − uvTA−1

α
+ uvTA−1 − uvTA−1uvTA−1

α
= I − uvTA−1

α

(
α− 1− vTA−1u

)
(remember that vTA−1u is a number, and so it commutes with all matrices). So by choosing α = 1+vTA−1u
we have that the inverse of A+ uvT is

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

This is actually a famous relationship, known as the Sherman–Morrison formula, that is extremely useful
in lots of real problems.

1.2.2 part (b)

Because matrix multiplication is associative, we can compute A−1uvTA−1 from above in different orders:

A−1(u(vTA−1)) = A−1((uvT)A−1) = (A−1u)(vTA−1)

If m = 5 (i.e. A is a 5×5 matrix and u and v are 5-component column vectors) compute how many scalar
multiplications (multiplications of numbers) are required if we do the products indicated by the parentheses
for these three different parenthesizations of A−1uvTA−1, assuming you are given A−1, u, and v (and that
all matrix entries are nonzero so you can’t skip any multiplies). (You don’t need to actually do the matrix
products, just work out how many multiplications they would require!)

Which order (parenthesization) would you choose to calculate A−1uvTA−1 for your (A+uvT)−1 expres-
sion in part (a) in order to minimize your work?

For example, the outer product uvT produces an m ×m matrix, whose (i, j) entry is uivj . So, there is
one multiplication per entry of the output, or m2 multiplications (25) in total to compute uvT .

Solution To multiply a k× l matrix by a l× r matrix we need to do l multiplications for each entry of the
result. So we need to do klr multiplications. Now let us do the three cases

• To compute vTA−1 we need to do m2 multiplications and the result is an m× 1 matrix. To compute
u(vTA−1) we need to do m2 additional multiplications and the result is an m×m matrix. Finally to
compute A−1(u(vTA−1)) we need to do m3 multiplications. In total we did

m2 +m2 +m3 = m3 + 2m2

multiplications

• To compute uvT we need to do m2 multiplications. To compute (uvT)A−1 we need to do m3 multipli-
cations. Finally to compute A−1((uvT)A−1 we need to do m3 other multiplications. In total we need
to do 2m3 +m2 multiplications

• To compute A−1u we need to do m2 multiplications and the result is an m × 1 matrix. To compute
vTA−1 we need to do m2 multiplications and the result is an 1 × m matrix. Finally to compute
(A−1u)(vTA−1) we need to do m2 multiplications, so in total we did 3m2 multiplications.

The approach with the least amount of multiplications is by far the third one.

1.3 Problem 3

(Similar to Strang 2.6 problem 22.)
In pset 1, you did “upside-down” Gaussian elimination to convert the matrix

A =

 1 6 −3
−2 3 4
1 0 −2


2

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://en.wikipedia.org/wiki/Associative_property

into a lower triangular matrix

L =

−0.5 0 0
0 3 0
1 0 −2


Find an upper-triangular matrix U such that A = UL. (This example illustrates the fact that “upside-down”
elimination corresponds to a “UL factorization” of A.)

Solution To find the matrix U we need to do in reverse order the operations we did to find L. So we need
to start weith the identity 1 0 0

0 1 0
0 0 1


then add twice the second row to the first 1 2 0

0 1 0
0 0 1


and subtract twice the third row from the second and add 3

2 times the third row to the first

U =

1 2 3/2
0 1 −2
0 0 1


As we observed in class, the entries of U above the diagonal are just the multipliers for the row reduction

with the opposite sign.

1.4 Problem 4

1.4.1 part (a)

Show that by multiplying a lower-triangular L matrix by a permutation (re-ordering) matrix P on the left
and right you can convert L to an upper-triangular matrix PLP . You don’t have to prove it in general, just
find the matrix P that works for any 3× 3 matrix L.

Once you have figured it out, check it. Enter your matrix P in Julia below, and use it to flip the following
lower-triangular matrix to an upper-triangular one:

In [1]: X = [1 0 0

2 3 0

1 3 -1]

Out[1]: 3x3 Array{Int64,2}:
1 0 0

2 3 0

1 3 -1

In [2]: P = [0 0 1

0 1 0

1 0 0]

Out[2]: 3x3 Array{Int64,2}:
0 0 1

0 1 0

1 0 0

In [3]: P*X*P # the result of this should be upper-triangular:

Out[3]: 3x3 Array{Int64,2}:
-1 3 1

0 3 2

0 0 1

3

Solution Choose the matrix P =

0 0 1
0 1 0
1 0 0

. Then multiplying by P on the left exchanges the first

and third row, and multiplying by P on the right exchanges the first and third columns, so doing both will
convert a lower triangular matrix to an upper triangular matrix and vice versa.

Although you were not required to do anything but the 3 × 3 case, this is one of those cases where the
general case is almost easier to understand. If you have an arbitrary m×m lower triangular matrix, P should
just be the permutation that reverses the order of the rows or columns. This is easy to see graphically:

In [4]: Xbig = Matrix(LowerTriangular(rand(100,100))) # a random 100×100 lower-triangular matrix

Pbig = eye(100,100)[100:-1:1,:] # the permutation matrix that reverses the rows (or cols)

using PyPlot

subplot(1,3,1)

spy(Xbig) # plot the nonzero pattern

title(L"lower-triangular X", y=1.2)

text(60,40, "zeros")

text(20,80, "nonzeros", color="white")

subplot(1,3,2)

spy(Pbig*Xbig)

title(L"PX", y=1.2)

subplot(1,3,3)

spy(Pbig*Xbig*Pbig)

title(L"PXP", y=1.2)

Out[4]: PyObject <matplotlib.text.Text object at 0x31b843190>

If P is the reversal permutation, going from X to PX just reverses the rows, which flips the black triangle
of nonzeros upside down but with the wrong orientation. Reversing both rows and columns with PXP gives
the desired upper-triangular nonzero pattern.

1.4.2 part (b)

What is P−1?
You can find it numerically from Julia with the command inv(P), but you should still explain why it

comes out that way:

In [5]: inv(P) # compute P−1 numerically, using the P defined above

4

Out[5]: 3x3 Array{Float64,2}:
-0.0 -0.0 1.0

-0.0 1.0 0.0

1.0 0.0 0.0

Solution We can see from above that inv(P) in Julia is in fact the same matrix as P (up to roundoff
errors).

That is, P−1 = P . The reason for this is that P is the permutation that reverses the order of the rows,
and reversing the order twice returns things back to the original order. Hence P 2 = I, that is P−1 = P .

It is also true that P−1 = PT for any permutation matrix, as explained in class, but this particular P is
even more special than that.

1.4.3 part (c)

Suppose we take the A matrix from problem 3 and the P matrix from above, and compute the LU factor-
ization PAP = L′U ′ without row swaps (labeling the matrices L′ and U ′ so that they aren’t confused with
the ones above), then compute PL′P and PU ′P . How to the results compare to your A = UL factorization
from problem 3?

Why? (You should be able to do some matrix algebra to turn PAP = L′U ′ into A = UL.)

In [6]: A = [1 6 -3

-2 3 4

1 0 -2]

L′, U′ = lu(P*A*P, Val{false}) # LU factorization of PAP without row swaps

Out[6]: (

3x3 Array{Float64,2}:
1.0 0.0 0.0

-2.0 1.0 0.0

1.5 2.0 1.0,

3x3 Array{Float64,2}:
-2.0 0.0 1.0

0.0 3.0 0.0

0.0 0.0 -0.5,

[1,2,3])

In [7]: P*L′*P

Out[7]: 3x3 Array{Float64,2}:
1.0 2.0 1.5

0.0 1.0 -2.0

0.0 0.0 1.0

In [8]: P*U′*P

Out[8]: 3x3 Array{Float64,2}:
-0.5 0.0 0.0

0.0 3.0 0.0

1.0 0.0 -2.0

Solution Numerically, you should notice that P*L′*P is exactly the U matrix from our A = UL factorization
in problem 3, and P*U′*P is exactly the L matrix. Now we want to derive this algebraically.

We want to transform the equation PAP = L′U ′ into something of the form A = · · ·. So we multiply on
the left and the right by P−1 = P and we obtain

5

A = PL′U ′P

Now, we want to see the right hand side as the product of an upper triangular matrix by a lower triangular
matrix. From part (a) we know that PL′P and PU ′P are of the right form. Moreover, since P 2 = I we
have that

A = PL′U ′P = PL′P 2U ′P = (PL′P)(PU ′P)

Finally, since P just permutes rows and columns, the diagonal entries of PL′P are all 1s, exactly as
expected for an elimination matrix (as problem 3, above). So (PL′P)(PU ′P) = UL gives U = PL′P and
L = PU ′P from the UL factorization of A.

6

